Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen

Abstract

As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans1,2,3,4. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that ‘sialidase-sensitive’ animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas ‘sialidase-insensitive’ human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies1,3,6,7, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells8, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori9 and noroviruses10. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world’s population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VP8* structure of HAL1166 P[14] human rotavirus strain and structural comparison with other VP8* structures.
Figure 2: Structural analysis of P[14] VP8*–A-type HBGA interactions.
Figure 3: HAL1166 rotavirus specifically recognizes A-type HBGA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors for the P[14] VP8* structures are deposited in the Protein Data Bank under accession numbers 4DRR (apo), 4DRV (with A-type trisaccharide) and 4DS0 (with A-type tetrasaccharide). Raw glycan array data are available at http://www.functionalglycomics.org/glycomics/ublicdata/selectedScreens.jsp.

References

  1. Blanchard, H., Yu, X., Coulson, B. S. & von Itzstein, M. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J. Mol. Biol. 367, 1215–1226 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Dormitzer, P. R. et al. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol. 76, 10512–10517 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nature Chem. Biol. 5, 91–93 (2009)

    Article  CAS  Google Scholar 

  4. Lopez, S. & Arias, C. F. Early steps in rotavirus cell entry. Curr. Top. Microbiol. Immunol. 309, 39–66 (2006)

    CAS  PubMed  Google Scholar 

  5. Settembre, E. C., Chen, J. Z., Dormitzer, P. R., Grigorieff, N. & Harrison, S. C. Atomic model of an infectious rotavirus particle. EMBO J. 30, 408–416 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. Dormitzer, P. R., Sun, Z. Y., Wagner, G. & Harrison, S. C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 21, 885–897 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kraschnefski, M. J. et al. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Glycobiology 19, 194–200 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Marionneau, S. et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565–573 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Glass, R. I., Parashar, U. D. & Estes, M. K. Norovirus gastroenteritis. N. Engl. J. Med. 361, 1776–1785 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Matthijnssens, J. et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 156, 1397–1413 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Monnier, N. et al. High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain. J. Virol. 80, 1513–1523 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerna, G. et al. Identification of a new VP4 serotype of human rotaviruses. Virology 200, 66–71 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Ciarlet, M. & Estes, M. K. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol. 80, 943–948 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Chitambar, S. D., Arora, R., Kolpe, A. B., Yadav, M. M. & Raut, C. G. Molecular characterization of unusual bovine group A rotavirus G8P[14] strains identified in western India: emergence of P[14] genotype. Vet. Microbiol. 148, 384–388 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Fukai, K., Saito, T., Inoue, K. & Sato, M. Molecular characterization of novel P[14],G8 bovine group A rotavirus, Sun9, isolated in Japan. Virus Res. 105, 101–106 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Matthijnssens, J. et al. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J. Virol. 83, 2917–2929 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Byres, E. et al. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456, 648–652 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  19. Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Neu, U. et al. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8, 309–319 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Midgley, S. E., Hjulsager, C. K., Larsen, L. E., Falkenhorst, G. & Bottiger, B. Suspected zoonotic transmission of rotavirus group A in Danish adults. Epidemiol. Infect. 10.1017/S0950268811001981 (27 September 2011)

  22. Parashar, U. D., Gibson, C. J., Bresse, J. S. & Glass, R. I. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis. 12, 304–306 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Estes, M. K. & Kapikian, A. Z. in Fields Virology Vol. 2 (eds Knipe, D. M. & Howley, P. M. ) 1917–1974 (Lippincott Williams & Wilkins, 2007)

    Google Scholar 

  24. Gray, J. & Iturriza-Gomara, M. Rotaviruses. Methods Mol. Biol. 665, 325–355 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Angel, J., Franco, M. A. & Greenberg, H. B. Rotavirus vaccines: recent developments and future considerations. Nature Rev. Microbiol. 5, 529–539 (2007)

    Article  CAS  Google Scholar 

  26. Gentsch, J. R. et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J. Infect. Dis. 192 (Suppl 1). S146–S159 (2005)

    Article  PubMed  Google Scholar 

  27. Guillon, P. et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 18, 1085–1093 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  PubMed  Google Scholar 

  31. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bohne, A., Lang, E. & von der Lieth, C. W. SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15, 767–768 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lütteke, T., Frank, M. & von der Lieth, C. W. Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res. 33, D242–D246 (2005)

    Article  PubMed  Google Scholar 

  37. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995)

    Article  CAS  PubMed  Google Scholar 

  38. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Smith, D. F., Song, X. & Cummings, R. D. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 480, 417–444 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nature Chem. Biol. 5, 91–93 (2009)

    Article  CAS  Google Scholar 

  41. Crawford, S. E. et al. Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J. Virol. 80, 4820–4832 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guillon, P. et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 18, 1085–1093 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Hutson, A. M., Atmar, R. L., Marcus, D. M. & Estes, M. K. Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens. J. Virol. 77, 405–415 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from NIH grants AI36040 (to B.V.V.P.), AI 080656 and P30 DK56338 (to M.K.E.), GM62116 (to the Consortium for Functional Glycomics), and the Robert Welch foundation (Q1279) to B.V.V.P. We thank R. Atmar and S. Shanker for helpful discussions and BCM X-ray core facility for data collection.

Author information

Authors and Affiliations

Authors

Contributions

L.H. carried out expression, purification, crystallization, diffraction data collection and structure determination. L.H., S.E.C., R.C. and N.W.C.-P. contributed to virus infectivity assays in HT29, CHO cells and haemagglutination assays and data analyses. D.F.S. contributed to glycan array experiments and analysis. J.L.P. provided parental and genetically modified CHO cells and advice. M.K.E. provided supervision and advice on cell infectivity assays and analysis. L.H. and B.V.V.P. analysed and interpreted the structural data. B.V.V.P. contributed to the overall direction of the project and wrote the manuscript with input from other authors.

Corresponding author

Correspondence to B. V. Venkataram Prasad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-6. (PDF 1833 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Crawford, S., Czako, R. et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485, 256–259 (2012). https://doi.org/10.1038/nature10996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10996

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing