Systematic variation of the stellar initial mass function in early-type galaxies

Abstract

Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination1, no consensus has emerged on whether it is universal among different types of galaxies2. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal3,4,5,6,7, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way8. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS3D sample9 of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy’s IMF depends intimately on the galaxy's formation history.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Differentiating between the stellar and dark matter with integral-field stellar kinematics.
Figure 2: Systematic variation of the IMF in early-type galaxies.

References

  1. 1

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    ADS  Article  Google Scholar 

  2. 2

    Bastian, N. Covey, K. R. & Meyer, M. R. A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010)

    ADS  Article  Google Scholar 

  3. 3

    Cappellari, M. et al. The SAURON project – IV. The mass-to-light ratio, the virial mass estimator and the fundamental plane of elliptical and lenticular galaxies. Mon. Not. R. Astron. Soc. 366, 1126–1150 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Tortora, C., Napolitano, N. R., Romanowsky, A. J., Capaccioli, M. & Covone, G. Central mass-to-light ratios and dark matter fractions in early-type galaxies. Mon. Not. R. Astron. Soc. 396, 1132–1150 (2009)

    ADS  Article  Google Scholar 

  5. 5

    Treu, T. et al. The initial mass function of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010)

    ADS  Article  Google Scholar 

  6. 6

    Thomas, J. et al. Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. Mon. Not. R. Astron. Soc. 415, 545–562 (2011)

    ADS  Article  Google Scholar 

  7. 7

    Dutton, A. A. et al. Dark halo response and the stellar initial mass function in early-type and late-type galaxies. Mon. Not. R. Astron. Soc. 416, 322–345 (2011)

    ADS  Google Scholar 

  8. 8

    van Dokkum, P. G. & Conroy, C. A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Cappellari, M. et al. The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria. Mon. Not. R. Astron. Soc. 413, 813–836 (2011)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. Mon. Not. R. Astron. Soc. 390, 71–86 (2008)

    ADS  Article  Google Scholar 

  11. 11

    Emsellem, E., Monnet, G. & Bacon, R. The multi-gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems I. The formalism. Astron. Astrophys. 285, 723–738 (1994)

    ADS  Google Scholar 

  12. 12

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Klypin, A. A., Trujillo-Gomez, S. & Primack, J. Dark matter halos in the standard cosmological model: results from the Bolshoi simulation. Astrophys. J. 740, 102 (2011)

    ADS  Article  Google Scholar 

  14. 14

    Gnedin, O. Y. et al. Halo contraction effect in hydrodynamic simulations of galaxy formation. Preprint at 〈http://arxiv.org/abs/1108.5736〉 (2011)

  15. 15

    Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pacif. 116, 138–147 (2004)

    ADS  Article  Google Scholar 

  16. 16

    Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES - I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010)

    ADS  Google Scholar 

  17. 17

    Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    ADS  Article  Google Scholar 

  19. 19

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    ADS  Article  Google Scholar 

  20. 20

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    ADS  Article  Google Scholar 

  21. 21

    Duffy, A. R. et al. Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles. Mon. Not. R. Astron. Soc. 405, 2161–2178 (2010)

    ADS  CAS  Google Scholar 

  22. 22

    Bell, E. F. & de Jong, R. S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550, 212–229 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Cappellari, M. et al. The ATLAS3D project – VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation. Mon. Not. R. Astron. Soc. 416, 1680–1696 (2011)

    ADS  Article  Google Scholar 

  24. 24

    Renzini, A. in The Initial Mass Function 50 Years Later (ed. Corbelli, E., Palla, F. and Zinnecker, H. ) 221 (Springer, 2005)

    Google Scholar 

  25. 25

    Ferreras, I., Saha, P. & Burles, S. Unveiling dark haloes in lensing galaxies. Mon. Not. R. Astron. Soc. 383, 857–863 (2008)

    ADS  Article  Google Scholar 

  26. 26

    Hoversten, E. A. & Glazebrook, K. Evidence for a nonuniversal stellar initial mass function from the integrated properties of SDSS galaxies. Astrophys. J. 675, 163–187 (2008)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Gunawardhana, M. L. P. et al. Galaxy and mass assembly (GAMA): the star formation rate dependence of the stellar initial mass function. Mon. Not. R. Astron. Soc. 415, 1647–1662 (2011)

    ADS  Article  Google Scholar 

  28. 28

    Kroupa, P. & Weidner, C. Galactic-field initial mass functions of massive stars. Astrophys. J. 598, 1076–1078 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Deason, A. J., Belokurov, V., Evans, N. W. & McCarthy, I. G. Elliptical galaxy masses out to five effective radii: the realm of dark matter. Astrophys. J. 748, 2 (2012)

    ADS  Article  Google Scholar 

  30. 30

    Moster, B. P. et al. Constraints on the relationship between stellar mass and halo mass at low and high redshift. Astrophys. J. 710, 903–923 (2010)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

M.C. acknowledges support from a Royal Society University Research Fellowship. This work was supported by the rolling grants ‘Astrophysics at Oxford’ from the UK Research Councils. R.L.D. acknowledges support from Christ Church College, Oxford University, and from the Royal Society in the form of a Wolfson Merit Award. S.K. acknowledges support from the Royal Society Joint Projects Grant. R.M.M. is supported by the Gemini Observatory. T.N. and M. Bois acknowledge support from the DFG Cluster of Excellence ‘Origin and Structure of the Universe’. M.S. acknowledges support from a STFC Advanced Fellowship. N.S. and T.A.D. acknowledge support from an STFC studentship.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Michele Cappellari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cappellari, M., McDermid, R., Alatalo, K. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012). https://doi.org/10.1038/nature10972

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing