Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptation at the output of the chemotaxis signalling pathway


In the bacterial chemotaxis network, receptor clusters process input1,2,3, and flagellar motors generate output4. Receptor and motor complexes are coupled by the diffusible protein CheY-P. Receptor output (the steady-state concentration of CheY-P) varies from cell to cell5. However, the motor is ultrasensitive, with a narrow operating range of CheY-P concentrations6. How the match between receptor output and motor input might be optimized is unclear. Here we show that the motor can shift its operating range by changing its composition. The number of FliM subunits in the C-ring increases in response to a decrement in the concentration of CheY-P, increasing motor sensitivity. This shift in sensitivity explains the slow partial adaptation observed in mutants that lack the receptor methyltransferase and methylesterase7,8 and why motors show signal-dependent FliM turnover9. Adaptive remodelling is likely to be a common feature in the operation of many molecular machines.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Motor responses to stepwise addition of chemical attractants monitored by the bead assay.
Figure 2: FRET responses (Y/C ratio) of cheR cheB cells to stepwise addition of chemical attractants.
Figure 3: CW bias as a function of CheY-P concentration.
Figure 4: Changes in single-motor FliM−YFP fluorescence intensities in cheR cheB cells tethered by hooks and stimulated by addition of attractant (at time t 0 , arrow).


  1. Sourjik, V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12, 569–576 (2004)

    Article  CAS  Google Scholar 

  2. Hazelbauer, G. L., Falke, J. J. & Parkinson, J. S. Baterial chemoreceptors: high -performance signaling in networked arrays. Trends Biochem. Sci. 33, 9–19 (2008)

    Article  CAS  Google Scholar 

  3. Greenfield, D. et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7, e1000137 (2009)

    Article  Google Scholar 

  4. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003)

    Article  CAS  Google Scholar 

  5. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Stock, J., Kersulis, G. & Koshland, D. E., Jr Neither methylating nor demthylating enzymes are required for bacterial chemotaxis. Cell 42, 683–690 (1985)

    Article  CAS  Google Scholar 

  8. Segall, J. E., Block, S. M. & Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 83, 8987–8991 (1986)

    Article  ADS  CAS  Google Scholar 

  9. Delalez, N. J. et al. Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc. Natl Acad. Sci. USA 107, 11347–11351 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Duke, T. A. J. & Bray, D. Heightened sensitivity of a lattice of membrane of receptors. Proc. Natl Acad. Sci. USA 96, 10104–10108 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Mello, B. A. & Tu, Y. Effects of adaptation in maintaining high sensitivity over a wide dynamic range of backgrounds for Escherichia coli chemotaxis. Biophys. J. 92, 2329–2337 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Hansen, C. H., Endres, R. G. & Wingreen, N. S. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4, e1 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Levin, M. D., Morton-Firth, C. J., Abouhamad, W. N., Bourret, R. B. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Sourjik, V., Vaknin, A., Shimizu, T. S. & Berg, H. C. In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol. 423, 365–391 (2007)

    Article  CAS  Google Scholar 

  16. Shimizu, T. S., Delalez, N., Pichler, K. & Berg, H. C. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: absence of feedback from the flagellar motors. Proc. Natl Acad. Sci. USA 103, 2093–2097 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Blair, D. F. & Berg, H. C. Restoration of torque in defective flagellar motors. Science 242, 1678–1681 (1988)

    Article  ADS  CAS  Google Scholar 

  18. Reid, S. W. et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc. Natl Acad. Sci. USA 103, 8066–8071 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Fukuoka, H., Inoue, Y., Terasawa, S., Takahashi, H. & Ishijima, A. Exchange of rotor components in functioning bacterial flagellar motor. Biochem. Biophys. Res. Commun. 394, 130–135 (2010)

    Article  CAS  Google Scholar 

  21. Yuan, J. & Berg, H. C. Resurrection of the flagellar motor near zero load. Proc. Natl Acad. Sci. USA 105, 1182–1185 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Lipkow, K. Changing cellular localization of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2, e39 (2006)

    Article  ADS  Google Scholar 

  23. Blat, Y. & Eisenbach, M. Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY, the signal protein of bacterial chemotaxis. J. Biol. Chem. 271, 1226–1231 (1996)

    Article  CAS  Google Scholar 

  24. Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  Google Scholar 

  26. Alon, U. et al. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238–4248 (1998)

    Article  Google Scholar 

  27. Turner, L., Caplan, S. R. & Berg, H. C. Temperature induced switching of the bacterial flagellar motor. Biophys. J. 71, 2227–2233 (1996)

    Article  CAS  Google Scholar 

  28. Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Yuan, J., Fahrner, K. A. & Berg, H. C. Switching of the bacterial flagellar motor near zero load. J. Mol. Biol. 390, 394–400 (2009)

    Article  CAS  Google Scholar 

  30. Shimizu, T. S., Tu, Y. & Berg, H. C. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Syst. Biol. 6, 382 (2010)

    Article  Google Scholar 

  31. Parkinson, J. S. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J. Bacteriol. 135, 45–53 (1978)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Amann, E., Ochs, B. & Abel, K.-J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69, 301–315 (1988)

    Article  CAS  Google Scholar 

  33. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995)

    Article  CAS  Google Scholar 

  34. Yuan, J., Fahrner, K. A., Turner, L. & Berg, H. C. Asymmetry in the clockwise and counter-clockwise rotation of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 107, 12846–12849 (2010)

    Article  ADS  CAS  Google Scholar 

  35. Berg, H. C. & Block, S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J. Gen. Microbiol. 130, 2915–2920 (1984)

    CAS  PubMed  Google Scholar 

  36. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)

    Article  CAS  Google Scholar 

Download references


This work was supported by National Institutes of Health Grant AI016478. R.W.B. is a recipient of an EMBO Long-Term Fellowship.

Author information

Authors and Affiliations



J.Y. and H.C.B. planned the work and wrote the first draft of the paper. J.Y. performed the research with help on the MWC model and TIRF experiment and analysis from R.W.B. and on TIRF analysis from B.G.H.

Corresponding author

Correspondence to Howard C. Berg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, J., Branch, R., Hosu, B. et al. Adaptation at the output of the chemotaxis signalling pathway. Nature 484, 233–236 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing