Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of the µ-opioid receptor bound to a morphinan antagonist

Abstract

Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall view of the µ-OR structure.
Figure 2: Comparison of ligand-binding pockets.
Figure 3: Structural basis for morphinan ligand binding to the µ-OR.
Figure 4: µ-OR oligomeric arrangement.
Figure 5: The four-helix bundle interface.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for m-OR–T4L are deposited in the Protein Data Bank under accession code 4DKL.

References

  1. Katzung, B. G. Basic and Clinical Pharmacology 10th edn (LANGE McGraw Hill Medical, 2007)

    Google Scholar 

  2. Matthes, H. W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383, 819–823 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Lord, J. A., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495–499 (1977)

    Article  ADS  CAS  Google Scholar 

  4. Raffa, R. B., Martinez, R. P. & Connelly, C. D. G-protein antisense oligodeoxyribonucleotides and μ-opioid supraspinal antinociception. Eur. J. Pharmacol. 258, R5–R7 (1994)

    Article  CAS  Google Scholar 

  5. Shukla, A. K., Xiao, K. & Lefkowitz, R. J. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457–469 (2011)

    Article  CAS  Google Scholar 

  6. Molinari, P. et al. Morphine-like opiates selectively antagonize receptor-arrestin interactions. J. Biol. Chem. 285, 12522–12535 (2010)

    Article  CAS  Google Scholar 

  7. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Ballesteros, J. A. & Weinstein, H. Integrated Methods for the Construction of Three Dimensional Models and Computational Probing of Structure Function Relations in G Protein-Coupled Receptors Vol. 25 366–428 (Academic, 1995)

    CAS  Google Scholar 

  9. Chen, C. et al. Determination of the amino acid residue involved in [3H]β-funaltrexamine covalent binding in the cloned rat μ-opioid receptor. J. Biol. Chem. 271, 21422–21429 (1996)

    Article  CAS  Google Scholar 

  10. Huang, P. et al. Functional role of a conserved motif in TM6 of the rat μ opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6.34(279) with Lys and Asp. Biochemistry 40, 13501–13509 (2001)

    Article  CAS  Google Scholar 

  11. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012)

    Article  ADS  CAS  Google Scholar 

  13. Disse, B. et al. Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci. 52, 537–544 (1993)

    Article  CAS  Google Scholar 

  14. Cassel, J. A., Daubert, J. D. & DeHaven, R. N. [3H]Alvimopan binding to the μ opioid receptor: comparative binding kinetics of opioid antagonists. Eur. J. Pharmacol. 520, 29–36 (2005)

    Article  CAS  Google Scholar 

  15. Kurowski, M., Rosenbaum, J. S., Perry, D. C. & Sadee, W. [3H]-etorphine and [3H]-diprenorphine receptor binding in vitro and in vivo: differential effect of Na+ and guanylyl imidodiphosphate. Brain Res. 249, 345–352 (1982)

    Article  CAS  Google Scholar 

  16. Sporer, K. A. Acute heroin overdose. Ann. Intern. Med. 130, 584–590 (1999)

    Article  CAS  Google Scholar 

  17. Alford, B. T., Burkhart, R. L. & Johnson, W. P. Etorphine and diprenorphine as immobilizing and reversing agents in captive and free-ranging mammals. J. Am. Vet. Med. Assoc. 164, 702–705 (1974)

    CAS  PubMed  Google Scholar 

  18. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Mansour, A. et al. Key residues defining the μ-opioid receptor binding pocket: a site-directed mutagenesis study. J. Neurochem. 68, 344–353 (1997)

    Article  CAS  Google Scholar 

  20. Bonner, G., Meng, F. & Akil, H. Selectivity of μ-opioid receptor determined by interfacial residues near third extracellular loop. Eur. J. Pharmacol. 403, 37–44 (2000)

    Article  CAS  Google Scholar 

  21. Zadina, J. E., Hackler, L., Ge, L. J. & Kastin, A. J. A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386, 499–502 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Seki, T. et al. DAMGO recognizes four residues in the third extracellular loop to discriminate between μ- and κ-opioid receptors. Eur. J. Pharmacol. 350, 301–310 (1998)

    Article  CAS  Google Scholar 

  23. Rozenfeld, R., Gomes, I. & Devi, L. in The Opiate Receptors Vol. 23 (ed. Pasternak, G. W. ) Ch. 15 407–437 (Humana, 2011)

    Article  Google Scholar 

  24. Johnston, J. M. et al. Making structural sense of dimerization interfaces of δ opioid receptor homodimers. Biochemistry 50, 1682–1690 (2011)

    Article  CAS  Google Scholar 

  25. Fanelli, F. & De Benedetti, P. G. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem. Rev. 111, PR438–PR535 (2011)

    Article  CAS  Google Scholar 

  26. Hebert, T. E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996)

    Article  CAS  Google Scholar 

  27. Granier, S. et al. A cyclic peptide mimicking the third intracellular loop of the V2 vasopressin receptor inhibits signaling through its interaction with receptor dimer and G protein. J. Biol. Chem. 279, 50904–50914 (2004)

    Article  CAS  Google Scholar 

  28. Hu, J. et al. Structural aspects of M3 muscarinic acetylcholine receptor dimer formation and activation. FASEB J. 26, 604–616 (2011)

    Article  Google Scholar 

  29. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008)

    Article  ADS  CAS  Google Scholar 

  30. He, S. Q. et al. Facilitation of μ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation. Neuron 69, 120–131 (2011)

    Article  CAS  Google Scholar 

  31. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999)

    Article  ADS  CAS  Google Scholar 

  32. He, L., Fong, J., von Zastrow, M. & Whistler, J. L. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108, 271–282 (2002)

    Article  CAS  Google Scholar 

  33. He, L. & Whistler, J. L. An opiate cocktail that reduces morphine tolerance and dependence. Curr. Biol. 15, 1028–1033 (2005)

    Article  CAS  Google Scholar 

  34. George, S. R. et al. Oligomerization of μ- and δ-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 275, 26128–26135 (2000)

    Article  CAS  Google Scholar 

  35. Gomes, I., Ijzerman, A. P., Ye, K., Maillet, E. L. & Devi, L. A. G protein-coupled receptor heteromerization: a role in allosteric modulation of ligand binding. Mol. Pharmacol. 79, 1044–1052 (2011)

    Article  CAS  Google Scholar 

  36. Vilardaga, J. P. et al. Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nature Chem. Biol. 4, 126–131 (2008)

    Article  CAS  Google Scholar 

  37. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011)

    Article  ADS  CAS  Google Scholar 

  38. Fung, J. J. et al. Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J. 28, 3315–3328 (2009)

    Article  CAS  Google Scholar 

  39. Golebiewska, U., Johnston, J. M., Devi, L., Filizola, M. & Scarlata, S. Differential response to morphine of the oligomeric state of μ-opioid in the presence of δ-opioid receptors. Biochemistry 50, 2829–2837 (2011)

    Article  CAS  Google Scholar 

  40. Portoghese, P. S., Sultana, M. & Takemori, A. E. Design of peptidomimetic δ opioid receptor antagonists using the message-address concept. J. Med. Chem. 33, 1714–1720 (1990)

    Article  CAS  Google Scholar 

  41. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  45. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D 61, 850–855 (2005)

    Article  Google Scholar 

  46. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  47. Schrodinger, L. The PyMOL Molecular Graphics System v.1.3r1. (2010)

Download references

Acknowledgements

We acknowledge support from INSERM (S.G.), the Stanford Medical Scientist Training Program (A.M.), the National Science Foundation (A.C.K.), the Lundbeck Foundation (J.M.M.), the National Institutes of Health Grants NS028471 (B.K.K.) and DA031418 (B.K.K. and R.K.S.), and the Mathers Foundation (B.K.K. and W.I.W.).

Author information

Authors and Affiliations

Authors

Contributions

A.M., A.C.K. and S.G. designed experiments, performed research and analysed data. T.S.K. and F.S.T. expressed and purified receptor. J.M.M. performed preliminary biochemical experiments with wild-type µ-OR. R.K.S. contributed to the effort of µ-OR crystallization and writing of the manuscript. W.I.W. supervised diffraction data analysis and model refinement. L.P. built the tetramer model and helped with the analysis of the dimer interfaces. A.M., A.C.K., S.G. and B.K.K. prepared the manuscript. S.G. and B.K.K. supervised the research.

Corresponding authors

Correspondence to Brian K. Kobilka or Sébastien Granier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Figures 1-12, Supplementary Table 1 and additional references. (PDF 31165 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manglik, A., Kruse, A., Kobilka, T. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012). https://doi.org/10.1038/nature10954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10954

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing