Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein


The conversion of chemical energy into mechanical force by AAA+ (ATPases associated with diverse cellular activities) ATPases is integral to cellular processes, including DNA replication, protein unfolding, cargo transport and membrane fusion1. The AAA+ ATPase motor cytoplasmic dynein regulates ciliary trafficking2, mitotic spindle formation3 and organelle transport4, and dissecting its precise functions has been challenging because of its rapid timescale of action and the lack of cell-permeable, chemical modulators. Here we describe the discovery of ciliobrevins, the first specific small-molecule antagonists of cytoplasmic dynein. Ciliobrevins perturb protein trafficking within the primary cilium, leading to their malformation and Hedgehog signalling blockade. Ciliobrevins also prevent spindle pole focusing, kinetochore–microtubule attachment, melanosome aggregation and peroxisome motility in cultured cells. We further demonstrate the ability of ciliobrevins to block dynein-dependent microtubule gliding and ATPase activity in vitro. Ciliobrevins therefore will be useful reagents for studying cellular processes that require this microtubule motor and may guide the development of additional AAA+ ATPase superfamily inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ciliobrevins disrupt primary cilium-dependent Gli regulation.
Figure 2: Ciliobrevins disrupt spindle pole assembly and kinetochore–microtubule attachment.
Figure 3: Ciliobrevins inhibit melanosome aggregation and peroxisome motility.
Figure 4: Ciliobrevins inhibit cytoplasmic dynein-dependent microtubule gliding and ATPase activity.

Similar content being viewed by others


  1. White, S. R. & Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8, 1657–1667 (2007)

    Article  CAS  Google Scholar 

  2. Scholey, J. M. Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423–443 (2003)

    Article  CAS  Google Scholar 

  3. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996)

    Article  CAS  Google Scholar 

  4. Akhmanova, A. & Hammer, J. A., III Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487 (2010)

    Article  CAS  Google Scholar 

  5. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Hyman, J. M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl Acad. Sci. USA 106, 14132–14137 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Jiang, J. & Hui, C.-C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008)

    Article  CAS  Google Scholar 

  8. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nature Rev. Genet. 11, 331–344 (2010)

    Article  CAS  Google Scholar 

  9. Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 (2010)

    Article  CAS  Google Scholar 

  10. Kim, J., Kato, M. & Beachy, P. A. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl Acad. Sci. USA 106, 21666–21671 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Gaglio, T., Dionne, M. A. & Compton, D. A. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138, 1055–1066 (1997)

    Article  CAS  Google Scholar 

  14. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000)

    Article  CAS  Google Scholar 

  15. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045–1054 (2008)

    Article  CAS  Google Scholar 

  16. King, S. J., Brown, C. L., Maier, K. C., Quintyne, N. J. & Schroer, T. A. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol. Biol. Cell 14, 5089–5097 (2003)

    Article  CAS  Google Scholar 

  17. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998)

    Article  CAS  Google Scholar 

  18. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002)

    Article  CAS  Google Scholar 

  20. Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 176, 641–651 (2007)

    Article  CAS  Google Scholar 

  21. Bouchard, P., Penningroth, S. M., Cheung, A., Gagnon, C. & Bardin, C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. Proc. Natl Acad. Sci. USA 78, 1033–1036 (1981)

    Article  ADS  CAS  Google Scholar 

  22. Arasaki, K., Tani, K., Yoshimori, T., Stephens, D. J. & Tagaya, M. Nordihydroguaiaretic acid affects multiple dynein-dynactin functions in interphase and mitotic cells. Mol. Pharmacol. 71, 454–460 (2007)

    Article  CAS  Google Scholar 

  23. Schliwa, M., Ezzell, R. M. & Euteneuer, U. Erythro-9-[3-(2-hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc. Natl Acad. Sci. USA 81, 6044–6048 (1984)

    Article  ADS  CAS  Google Scholar 

  24. Park, S., Lee, D. K. & Yang, C. H. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 127, 23–28 (1998)

    Article  CAS  Google Scholar 

  25. Zhu, G. et al. Synthesis and biological evaluation of purealin and analogues as cytoplasmic dynein heavy chain inhibitors. J. Med. Chem. 49, 2063–2076 (2006)

    Article  CAS  Google Scholar 

  26. Maldonado, M. & Kapoor, T. M. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nature Cell Biol. 13, 475–482 (2011)

    Article  CAS  Google Scholar 

  27. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997)

    Article  CAS  Google Scholar 

  28. Kapoor, T. M. & Mitchison, T. J. Allele-specific activators and inhibitors for kinesin. Proc. Natl Acad. Sci. USA 96, 9106–9111 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Hook, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem. 280, 33045–33054 (2005)

    Article  Google Scholar 

  30. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000)

    Article  ADS  CAS  Google Scholar 

Download references


We thank T. Caspary for anti-Arl13b antibodies, W. Brinkley for human CREST anti-serum, T. Yen for anti-CENP-E antibodies, U. Peters for purified bovine dynein, S. Wacker for human kinesin-5 motor domain, R. Vallee for a pVL1393 baculovirus expression vector containing the rat dynein motor domain, and K. Bersuker and R. Kopito for TCR-α–GFP-expressing cells. This work was supported by funding from the National Institutes of Health (R01 CA136574 to J.K.C.; R01 GM65933 to T.M.K.; R01 GM71772 to T.M.K. and V.I.G.; R01 GM52111 to V.I.G.)

Author information

Authors and Affiliations



J.K.C. and T.M.K. conceived and directed the study. A.J.F. performed chemical syntheses and assays of Hedgehog signaling, primary cilia formation and function, ATPase activity, vanadate-dependent dynein photocleavage and p97-dependent protein degradation. A.J.F. and M.M. performed mitotic spindle analyses. K.B. and V.I.G. designed and interpreted the melanophore and peroxisome trafficking assays. J.S.W. performed microtubule gliding and dynein/microtubule binding assays. L.D.L. and M.O. designed and interpreted the Mcm2–7 helicase assays. A.J.F. and J.K.C. wrote the manuscript with contributions from all other authors.

Corresponding authors

Correspondence to Tarun M. Kapoor or James K. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains legends for Supplementary Movies 1-12, Supplementary Figures 1-15, Supplementary Methods and Materials and additional references. (PDF 7862 kb)

Supplementary Movies

This zipped file contains Supplementary Movies 1-6 – see Supplementary Information file pages 2-3 for full legends. (ZIP 17496 kb)

Supplementary Movies

This zipped file contains Supplementary Movies 7-12 – see Supplementary Information file pages 3-5 for full legends. (ZIP 6391 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firestone, A., Weinger, J., Maldonado, M. et al. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484, 125–129 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing