Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis of ultraviolet-B perception by UVR8


The Arabidopsis thaliana protein UVR8 is a photoreceptor for ultraviolet-B. Upon ultraviolet-B irradiation, UVR8 undergoes an immediate switch from homodimer to monomer, which triggers a signalling pathway for ultraviolet protection. The mechanism by which UVR8 senses ultraviolet-B remains largely unknown. Here we report the crystal structure of UVR8 at 1.8 Å resolution, revealing a symmetric homodimer of seven-bladed β-propeller that is devoid of any external cofactor as the chromophore. Arginine residues that stabilize the homodimeric interface, principally Arg 286 and Arg 338, make elaborate intramolecular cation–π interactions with surrounding tryptophan amino acids. Two of these tryptophans, Trp 285 and Trp 233, collectively serve as the ultraviolet-B chromophore. Our structural and biochemical analyses identify the molecular mechanism for UVR8-mediated ultraviolet-B perception, in which ultraviolet-B radiation results in destabilization of the intramolecular cation–π interactions, causing disruption of the critical intermolecular hydrogen bonds mediated by Arg 286 and Arg 338 and subsequent dissociation of the UVR8 homodimer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization and structure of the ultraviolet-sensing protein UVR8.
Figure 2: Structural basis of UVR8 homodimer formation.
Figure 3: Structural features of the ultraviolet-B-sensing amino acids.
Figure 4: Identification of Trp 285 and Trp 233 as the ultraviolet-B chromophore.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factor files of UVR8 wild type, W285A and W285F have been deposited in the Protein Data Bank under accession codes 4DNW, 4DNU and 4DNV, respectively.


  1. Falciatore, A. & Bowler, C. The evolution and function of blue and red light photoreceptors. Curr. Top. Dev. Biol. 68, 317–350 (2005)

    CAS  Google Scholar 

  2. van der Linden, A. M. et al. Genome-wide analysis of light- and temperature-entrained circadian transcripts in Caenorhabditis elegans. PLoS Biol. 8, e1000503 (2010)

    Google Scholar 

  3. Fogle, K. J., Parson, K. G., Dahm, N. A. & Holmes, T. C. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331, 1409–1413 (2011)

    CAS  Google Scholar 

  4. Jiao, Y., Lau, O. S. & Deng, X. W. Light-regulated transcriptional networks in higher plants. Nature Rev. Genet. 8, 217–230 (2007)

    CAS  Google Scholar 

  5. Kami, C., Lorrain, S., Hornitschek, P. & Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91, 29–66 (2010)

    CAS  Google Scholar 

  6. Quail, P. H. Phytochrome photosensory signalling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002)

    CAS  Google Scholar 

  7. Briggs, W. R. & Christie, J. M. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204–210 (2002)

    CAS  Google Scholar 

  8. Chaves, I. et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364 (2011)

    CAS  Google Scholar 

  9. Cashmore, A. R., Jarillo, J. A., Wu, Y. J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999)

    CAS  Google Scholar 

  10. Christie, J. M. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21–45 (2007)

    CAS  Google Scholar 

  11. Liu, H., Liu, B., Zhao, C., Pepper, M. & Lin, C. The action mechanisms of plant cryptochromes. Trends Plant Sci. 16, 684–691 (2011)

    CAS  Google Scholar 

  12. Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011)

    CAS  Google Scholar 

  13. Möglich, A., Yang, X., Ayers, R. A. & Moffat, K. Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 61, 21–47 (2010)

    Google Scholar 

  14. Kliebenstein, D. J., Lim, J. E., Landry, L. G. & Last, R. L. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 130, 234–243 (2002)

    CAS  Google Scholar 

  15. Brown, B. A. et al. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl Acad. Sci. USA 102, 18225–18230 (2005)

    CAS  Google Scholar 

  16. Brown, B. A. & Jenkins, G. I. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 146, 576–588 (2008)

    CAS  Google Scholar 

  17. Kaiserli, E. & Jenkins, G. I. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19, 2662–2673 (2007)

    CAS  Google Scholar 

  18. Li, D. & Roberts, R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell. Mol. Life Sci. 58, 2085–2097 (2001)

    CAS  Google Scholar 

  19. Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995)

    CAS  Google Scholar 

  20. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998)

    CAS  Google Scholar 

  21. Gallivan, J. P. & Dougherty, D. A. Cation–π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999)

    CAS  Google Scholar 

  22. Gallivan, J. P. & Dougherty, D. A. A computational study of cation−π interactions vs salt bridges in aqueous media: implications for protein engineering. J. Am. Chem. Soc. 122, 870–874 (2000)

    CAS  Google Scholar 

  23. Dougherty, D. A. Cation−π interactions involving aromatic amino acids. J. Nutr. 137, 1504S–1508S (2007)

    CAS  Google Scholar 

  24. Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. Estimates of the ab initio limit for π–π interactions: the benzene dimer. J. Am. Chem. Soc. 124, 10887–10893 (2002)

    CAS  Google Scholar 

  25. Wagner, J. R., Brunzelle, J. S., Forest, K. T. & Vierstra, R. D. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331 (2005)

    CAS  Google Scholar 

  26. Ulijasz, A. T. et al. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463, 250–254 (2010)

    CAS  Google Scholar 

  27. Brudler, R. et al. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11, 59–67 (2003)

    CAS  Google Scholar 

  28. Brautigam, C. A. et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 12142–12147 (2004)

    CAS  Google Scholar 

  29. Crosson, S. & Moffat, K. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc. Natl Acad. Sci. USA 98, 2995–3000 (2001)

    CAS  Google Scholar 

  30. Crosson, S. & Moffat, K. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 1067–1075 (2002)

    CAS  Google Scholar 

  31. Yu, H. T., Colucci, W. J., McLaughlin, M. L. & Barkley, M. D. Fluorescence quenching in indoles by excited-state proton transfer. J. Am. Chem. Soc. 114, 8449–8454 (1992)

    CAS  Google Scholar 

  32. Christie, J. M. et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science (9 February 2012)

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Google Scholar 

  34. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  35. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Google Scholar 

  36. Cowtan, K. The Buccaneer software for automated model building. Acta Crystallogr. D 62, 1002–1011 (2006)

    Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Google Scholar 

  38. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Google Scholar 

  39. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    CAS  Google Scholar 

  40. DeLano, W. L. The PyMOL Molecular Graphics System. (2002)

Download references


We thank J. He and S. Huang at SSRF, and K. Hasegawa and T. Kumasaka at the SPring-8 beamline BL41XU, for assistance. This work was supported by funds from the Ministry of Science and Technology (grant no. 2009CB918801 to Y.S., and 2012CB910900 to X.W.D.), the National Natural Science Foundation, and the Beijing Municipal Commissions of Education and Science and Technology.

Author information

Authors and Affiliations



D.W., Q.H., H.D., X.W.D. and Y.S. designed all experiments. D.W., Q.H., Z.Y., W.C., C.Y. and J.Z. performed the experiments. D.W., Q.H., Z.Y., W.C., C.Y., X.H., J.Z., P.Y., H.D., J.W., X.W.D. and Y.S. contributed to technical work and data analysis. D.W., Q.H., Z.Y., W.C., C.Y., J.W., X.W.D. and Y.S. contributed to manuscript preparation. Y.S. wrote the manuscript.

Corresponding author

Correspondence to Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with legends, Supplementary Table 1 and additional references. (PDF 1491 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Wu, Hu, Q., Yan, Z. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing