Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of a roton collective mode in a two-dimensional Fermi liquid

Abstract

Understanding the dynamics of correlated many-body quantum systems is a challenge for modern physics. Owing to the simplicity of their Hamiltonians, 4He (bosons) and 3He (fermions) have served as model systems for strongly interacting quantum fluids, with substantial efforts devoted to their understanding. An important milestone was the direct observation of the collective phonon–roton mode in liquid 4He by neutron scattering, verifying Landau’s prediction1 and his fruitful concept of elementary excitations. In a Fermi system, collective density fluctuations (known as ‘zero-sound’ in 3He, and ‘plasmons’ in charged systems) and incoherent particle–hole excitations are observed. At small wavevectors and energies, both types of excitation are described by Landau’s theory of Fermi liquids2,3. At higher wavevectors, the collective mode enters the particle–hole band, where it is strongly damped. The dynamics of Fermi liquids at high wavevectors was thus believed to be essentially incoherent. Here we report inelastic neutron scattering measurements of a monolayer of liquid 3He, observing a roton-like excitation. We find that the collective density mode reappears as a well defined excitation at momentum transfers larger than twice the Fermi momentum. We thus observe unexpected collective behaviour of a Fermi many-body system in the regime beyond the scope of Landau’s theory. A satisfactory interpretation of the measured spectra is obtained using a dynamic many-body theory4.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Elementary excitations of superfluid 4 He.
Figure 2: Schematic picture of the elementary excitations of a Fermi liquid.
Figure 3: Experimental dynamic structure factor.
Figure 4: Theoretical dynamic structure factor.
Figure 5: Neutron spectra at selected wavevectors.

References

  1. Landau, L. D. On the theory of superfluidity of helium II. USSR J. Phys. 11, 91–92 (1947)

    CAS  Google Scholar 

  2. Landau, L. D. The theory of a Fermi liquid. Sov. Phys. JETP 3, 920–925 (1957)

    MathSciNet  CAS  MATH  Google Scholar 

  3. Pines, D. & Nozières, P. The Theory of Quantum Liquids (Benjamin, 1966)

    MATH  Google Scholar 

  4. Böhm, H. M., Holler, R., Krotscheck, E. & Panholzer, M. Dynamic many-body theory: Dynamics of Strongly Correlated Fermi Fluids. Phys. Rev. B 82, 224505 (2010)

    ADS  Article  Google Scholar 

  5. Thouless, D. J. The Quantum Mechanics of Many-body Systems 2nd edn (Academic, 1972)

    MATH  Google Scholar 

  6. Pines, D. Elementary excitations in quantum liquids. Phys. Today 34, 106–131 (1981)

    CAS  Article  Google Scholar 

  7. Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956)

    ADS  Article  Google Scholar 

  8. Glyde, H. R. Excitations in Liquid and Solid Helium (Clarendon, 1994)

    Google Scholar 

  9. Nozières, P. Is the roton in superfluid 4He the ghost of a Bragg spot? J. Low Temp. Phys. 137, 45–67 (2004)

    ADS  Article  Google Scholar 

  10. Jackson, H. W. Perturbative form of S(k,ω) for liquid 4He: basic calculation and results. Phys. Rev. A 8, 1529–1535 (1973)

    ADS  CAS  Article  Google Scholar 

  11. Clements, B. E., Krotscheck, E. & Tymczak, C. J. Multiphonon excitations in boson quantum films. Phys. Rev. B 53, 12253–12275 (1996)

    ADS  CAS  Article  Google Scholar 

  12. Campbell, C. E. & Krotscheck, E. Dynamic many-body theory: pair fluctuations in bulk 4He. Phys. Rev. B 80, 174501 (2009)

    ADS  Article  Google Scholar 

  13. Friman, B. L. & Krotscheck, E. K. Zero sound, spin fluctuations, and effective mass in liquid 3He. Phys. Rev. Lett. 49, 1705–1708 (1982)

    ADS  CAS  Article  Google Scholar 

  14. Krotscheck, E. &. Springer, J. Physical mechanisms for effective mass enhancement in 3He. J. Low Temp. Phys. 132, 281–295 (2003)

    ADS  CAS  Article  Google Scholar 

  15. Boronat, J., Casulleras, J. & Grau, V. Krotscheck, E. & Springer, J. Effective mass of two-dimensional 3He. Phys. Rev. Lett. 91, 085302 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Glyde, H. R. et al. Effective mass, spin fluctuations and zero sound in liquid 3He. Phys. Rev. B 61, 1421–1432 (2000)

    ADS  CAS  Article  Google Scholar 

  17. Sköld, K., Pelizzari, C. A., Kleb, R. & Ostrowski, G. E. Neutron scattering study of elementary excitations in liquid helium-3. Phys. Rev. Lett. 37, 842–845 (1976)

    ADS  Article  Google Scholar 

  18. Scherm, R. et al. Pressure dependence of elementary excitations in normal liquid helium-3. Phys. Rev. Lett. 59, 217–220 (1987)

    ADS  CAS  Article  Google Scholar 

  19. Greywall, D. S. Heat capacity of multilayers of 3He adsorbed on graphite at low millikelvin temperatures. Phys. Rev. B 41, 1842–1862 (1990)

    ADS  CAS  Article  Google Scholar 

  20. Morhard, K.-D. et al. Two-dimensional Fermi liquid in the highly correlated regime: the second layer of 3He adsorbed on graphite. Phys. Rev. B 53, 2658–2661 (1996)

    ADS  CAS  Article  Google Scholar 

  21. Bäuerle, C., Bunkov, Chen, A. S., Fisher, S. N. & Godfrin, H. Ultra-low temperature magnetic properties of liquid 3He films. J. Low Temp. Phys. 110, 333–338 (1998)

    ADS  Article  Google Scholar 

  22. Casey, A., Patel, H., Nyéki, J., Cowan, B. P. & Saunders, J. Strongly correlated two dimensional fluid 3He. J. Low Temp. Phys. 113, 293–298 (1998)

    ADS  CAS  Article  Google Scholar 

  23. Neumann, M., Nyéki, J., Cowan, B. P. & Saunders, J. Bilayer 3He: a simple two-dimensional heavy-fermion system with quantum criticality. Science 317, 1356–1359 (2007)

    ADS  CAS  Article  Google Scholar 

  24. Godfrin, H. & Lauter, H. J. Progress in Low Temperature Physics Vol. XIV, Ch. 4, 213–320 (ed. Halperin, W. P. ) (Elsevier Science, 1995)

    Google Scholar 

  25. Lauter, H. J., Godfrin, H., Frank, V. L. P. & Leiderer, P. Ripplons in 4He films observed by neutron scattering. Phys. Rev. Lett. 68, 2484–2487 (1992)

    ADS  CAS  Article  Google Scholar 

  26. Reatto, L. Novel substrates for helium adsorption: graphane and graphene-fluoride. Lecture given at Intl Conf. on Low Temp. Phys. (LT26) (Beijing, 15 August 2011)

    Google Scholar 

  27. Ruvalds, J. Are plasmons the key to superconducting oxides? Nature 328, 299 (1987)

    ADS  Article  Google Scholar 

  28. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007)

    ADS  CAS  Article  Google Scholar 

  29. Diaconescu, B. et al. Low-energy acoustic plasmons at metal surfaces. Nature 448, 57–59 (2007)

    ADS  CAS  Article  Google Scholar 

  30. Uemura, Y. J. et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1-xCax)RuO3 . Nature Phys. 3, 29–35 (2007)

    ADS  CAS  Article  Google Scholar 

  31. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ . Nature 454, 1072–1078 (2008)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Austrian–French programme Amadeus for providing initial support; to the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF grant P21264) , the French Agence Nationale de la Recherche (project ANR-2010-INTB-403-) and the EU FRP7 low-temperature infrastructure grant Microkelvin (project number 228464) for funding this research; and to the Institut Laue-Langevin for use of the facility.

Author information

Authors and Affiliations

Authors

Contributions

H.G., M.M., H.-J.L., A.S. and M.P. performed the neutron experiments; H.M.B., E.K. and M.P. developed the theory. All authors analysed the results and contributed to the work.

Corresponding author

Correspondence to Henri Godfrin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, which includes Supplementary Figure 1 and additional references. (PDF 543 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Godfrin, H., Meschke, M., Lauter, HJ. et al. Observation of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576–579 (2012). https://doi.org/10.1038/nature10919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10919

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing