Quantum plasmon resonances of individual metallic nanoparticles

Abstract

The plasmon resonances of metallic nanoparticles have received considerable attention for their applications in nanophotonics, biology, sensing, spectroscopy and solar energy harvesting. Although thoroughly characterized for spheres larger than ten nanometres in diameter, the plasmonic properties of particles in the quantum size regime have been historically difficult to describe owing to weak optical scattering, metal–ligand interactions, and inhomogeneity in ensemble measurements. Such difficulties have precluded probing and controlling the plasmonic properties of quantum-sized particles in many natural and engineered processes, notably catalysis. Here we investigate the plasmon resonances of individual ligand-free silver nanoparticles using aberration-corrected transmission electron microscope (TEM) imaging and monochromated scanning TEM electron energy-loss spectroscopy (EELS). This technique allows direct correlation between a particle’s geometry and its plasmon resonance. As the nanoparticle diameter decreases from 20 nanometres to less than two nanometres, the plasmon resonance shifts to higher energy by 0.5 electronvolts, a substantial deviation from classical predictions. We present an analytical quantum mechanical model that describes this shift due to a change in particle permittivity. Our results highlight the quantum plasmonic properties of small metallic nanospheres, with direct application to understanding and exploiting catalytically active and biologically relevant nanoparticles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Aberration-corrected TEM images of silver nanoparticles synthesized free of stabilizing ligands.
Figure 2: STEM image of a 20-nm-diameter silver particle and the associated deconvoluted EELS data.
Figure 3: Correlating Ag nanoparticle geometry with plasmonic EELS data.
Figure 4: Analytic quantum theory of particle permittivity and spectra.
Figure 5: Comparison of experimental data with quantum theory.

References

  1. 1

    Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Juluri, B. K., Zheng, Y. B., Ahmed, D., Jensen, L. & Huang, T. J. Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles. J. Phys. Chem. C 112, 7309–7317 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Catchpole, K. R. & Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    ADS  Article  Google Scholar 

  5. 5

    Bingham, J. M., Anker, J. N. & Kreno, L. E. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132, 17358–17359 (2010)

    CAS  Article  Google Scholar 

  6. 6

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Ann. Rev. Anal. Chem. 1, 601–626 (2008)

    CAS  Article  Google Scholar 

  8. 8

    Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf. Electrochem. 84, 1–20 (1977)

    CAS  Article  Google Scholar 

  9. 9

    Larsson, E. M., Langhammer, C., Zorić, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnol. 3, 598–602 (2008)

    CAS  Article  Google Scholar 

  12. 12

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    CAS  Article  Google Scholar 

  13. 13

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983)

    Google Scholar 

  14. 14

    Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995)

    Google Scholar 

  15. 15

    Kreibig, U. & Genzel, L. Optical absorption of small metallic particles. Surf. Sci. 156, 678–700 (1985)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Genzel, L., Martin, T. P. & Kreibig, U. Dielectric function and plasma resonances of small metal particles. Z. Phys. B 21, 339–346 (1975)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K. & Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl Acad. Sci. USA 107, 14530–14534 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lindfors, K., Kalkbrenner, T., Stoller, P. & Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Berciaud, S., Cognet, L., Tamarat, P. & Lounis, B. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett. 5, 515–518 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Bakr, O. M. et al. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. 48, 5921–5926 (2009)

    CAS  Article  Google Scholar 

  21. 21

    Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008)

    CAS  Article  Google Scholar 

  22. 22

    Sholl, D. S. & Steckel, J. A. Density Functional Theory: A Practical Introduction (Wiley-Interscience, 2009)

    Google Scholar 

  23. 23

    Cognet, L. et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl Acad. Sci. USA 100, 11350–11355 (2003)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)

    CAS  Article  Google Scholar 

  25. 25

    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Templeton, A. C., Pietron, J. J., Murray, R. W. & Mulvaney, P. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B 104, 564–570 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Hirakawa, T. & Kamat, P. V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc. 127, 3928–3934 (2005)

    CAS  Article  Google Scholar 

  29. 29

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Koh, A. L. et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Solomon, S. D. et al. Synthesis and study of silver nanoparticles. J. Chem. Educ. 84, 322–325 (2007)

    CAS  Article  Google Scholar 

  34. 34

    Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  35. 35

    Ferrell, T. L. & Echenique, P. M. Generation of surface excitations on dielectric spheres by an external electron beam. Phys. Rev. Lett. 55, 1526–1529 (1985)

    ADS  CAS  Article  Google Scholar 

  36. 36

    García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010)

    ADS  Article  Google Scholar 

  37. 37

    Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009)

    ADS  Article  Google Scholar 

  38. 38

    Gloter, A., Douiri, A., Tence, M. & Colliex, C. Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003)

    CAS  Article  Google Scholar 

  39. 39

    He, Y. & Zeng, T. First-principles study and model of dielectric functions of silver nanoparticles. J. Phys. Chem. C 114, 18023–18030 (2010)

    CAS  Article  Google Scholar 

  40. 40

    García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008)

    Article  Google Scholar 

  41. 41

    McMahon, J. M., Gray, S. K. & Schatz, G. C. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009)

    ADS  Article  Google Scholar 

  42. 42

    David, C. & García de Abajo, F. J. Spatial nonlocality in the optical response of metal nanoparticles. J. Phys. Chem. C 115, 19470–19475 (2011)

    CAS  Article  Google Scholar 

  43. 43

    Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908)

    Article  Google Scholar 

  44. 44

    Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Kreibig, U. & Fragstein, C. V. The limitation of electron mean free path in small silver particles. Z. Phys. 224, 307–323 (1969)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Alvarez, M. M. et al. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101, 3706–3712 (1997)

    CAS  Article  Google Scholar 

  47. 47

    Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993)

    ADS  Article  Google Scholar 

  48. 48

    Kraus, W. A. & Schatz, G. C. Plasmon resonance broadening in small metal particles. J. Chem. Phys. 79, 6130–6139 (1983)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Palik, E. D. Handbook of Optical Constants of Solids (Elsevier, 1998)

    Google Scholar 

  50. 50

    Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Mater. 10, 361–366 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Sheikholeslami, A. Atre, A. García-Etxarri and A. Baldi for discussions. This research was supported by the National Science Foundation Graduate Research Fellowship Program. J.A.D. acknowledges support from a Stanford Terman Fellowship and a Robert N. Noyce Family Faculty Fellowship.

Author information

Affiliations

Authors

Contributions

J.A.S. performed the experiment, analysed the data, and developed the model. A.L.K. provided substantial assistance with the STEM EELS procedure. J.A.D. guided and supervised the experiments and analysis. All authors contributed to writing and editing the manuscript.

Corresponding authors

Correspondence to Jonathan A. Scholl or Jennifer A. Dionne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Experiments, Supplementary Theory, Supplementary References and Supplementary Figures 1-4. (PDF 309 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scholl, J., Koh, A. & Dionne, J. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012). https://doi.org/10.1038/nature10904

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing