Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence against a chondritic Earth

Subjects

Abstract

The 142Nd/144Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry—that the composition of the silicate Earth is ‘chondritic’, meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Laboratory model of a mantle plume.
Figure 2: The pattern of volatile element depletion in the BSE for lithophile elements compared to CV carbonaceous chondrites and EH enstatite chondrites.
Figure 3: Depletion of some RLEs in the BSE by preferential collisional erosion of early-formed basaltic crust during accretion of planetesimals and planetary embryos.

References

  1. Lodders, K., Palme, H. & Gail, H.-P. in Landolt-Börnstein New Series (ed. Trumper, J. E.) Vol. VI/4B, Ch. 4.4 560–630 (Springer, 2009)

    Google Scholar 

  2. Meibom, A. & Clark, B. E. Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Pourmand, A., Dauphas, N. & Ireland, T. J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. http://dx.doi.org/10.1016/j.chemgeo.2011.08.011 (in the press)

  4. Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Regelous, M., Elliott, T. & Coath, C. D. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272, 330–338 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Andreasen, R. & Sharma, M. Mixing and homogenization in the early solar system: clues for Sr, Ba, Nd, and Sr isotopes in meteorites. Astrophys. J. 665, 874–883 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Carlson, R. W., Boyet, M. & Horan, M. Chondritic barium, neodymium, and samarium isotopic hetrogeneity and early Earth differentiation. Science 316, 1175–1178 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: constraints on solar nebula and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011)

    Article  ADS  CAS  Google Scholar 

  9. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Safronov, V. S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Israel Program for Scientific Translations, 1972)

    Google Scholar 

  13. O’Neill, H. & St C &. Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. A 366, 4205–4238 (2008)This paper discusses how the compositions of terrestrial planets may change during the later stages of their accretion.

    Article  ADS  Google Scholar 

  14. Halliday, A. N. & Porcelli, D. In search of lost planets—the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 192, 545–559 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)Here the 142Nd/144Nd for chondritic meteorites is shown to be 20 parts per million less than that of most terrestrial rocks.

    Article  ADS  CAS  Google Scholar 

  16. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)This paper discusses the implications of excess 142Nd/144Nd in terrestrial samples in terms of a non-chondritic mantle and a hidden reservoir.

    Article  ADS  CAS  Google Scholar 

  17. Kinoshita, N. et al. Geocosmochronometer 146Sm: a revised half-life value. Mineral. Mag. (Goldschmidt Conf. Abstr.) 75, 1191 (2011)

    Google Scholar 

  18. Qin, L.-P., Carlson, R. W., Alexander, C. M. & O’D Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim. Cosmochim. Acta 75, 7806–7828 (2011)

    Article  ADS  CAS  Google Scholar 

  19. Patchett, P. J., Vervoort, J. D., Söderlund, U. & Salters, V. J. M. Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet. Sci. Lett. 222, 29–41 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Andreasen, R. Sharma, M. Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 10.1016/j.epsl.2007.10.009. (2008)

    Article  ADS  CAS  Google Scholar 

  21. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Labrosse, S., Herlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Davies, G. F. Mantle plume, mantle convection and hotspot chemistry. Earth Planet. Sci. Lett. 99, 94–109 (1990)

    Article  ADS  CAS  Google Scholar 

  24. Loper, D. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995)

    Article  ADS  Google Scholar 

  25. Korenaga, J. A method to estimate the composition of the bulk silicate Earth in the presence of a hidden geochemical reservoir. Geochim. Cosmochim. Acta 73, 6952–6964 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Bourdon, B., Touboul, M., Caro, G. & Kleine, T. Early differentiation of the Earth and the Moon. Phil. Trans. R. Soc. A 366, 4105–4128 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Nyquist, L. E. et al. 146Sm–142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 59 (13). 2817–2837 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Boyet, M. & Carlson, R. W. A highly depleted moon or a nonmagma ocean origin for the lunar crust? Earth Planet. Sci. Lett. 262, 505–516 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Brandon, A. D. et al. Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Caro, G. & Bourdon, B. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle-crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    Article  ADS  Google Scholar 

  32. Campbell, I. H. The identification of old mantle plumes. Geol. Soc. Am. Spec. Publ. 352, 5–21 (2001)

    Google Scholar 

  33. Tolstikhin, I. N., Kramers, J. D. & Hofmann, A. W. A chemical Earth model with whole mantle convection: the importance of a core-mantle boundary layer (D′′) and its early formation. Chem. Geol. 226, 79–99 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007)

    Article  ADS  CAS  Google Scholar 

  35. Campbell, I. H. & Griffiths, R. W. The changing nature of mantle hotspots through time: implications for the geochemical evolution of the mantle. J. Geol. 100, 497–523 (1992)This paper uses the melting products of mantle plumes in conjunction with knowledge of their dynamics to determine the chemical structure of the mantle and shows how it has evolved with time.

    Article  ADS  CAS  Google Scholar 

  36. Davies, G. F. Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots. J. Geophys. Res. 93, 10467–10480 (1988)

    Article  ADS  Google Scholar 

  37. Sleep, N. H. Hotspots and mantle plume: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990)

    Article  ADS  Google Scholar 

  38. Davies, G. R. Mantle regulation of core cooling: a geodynamo without core radioactivity. Phys. Earth Planet. Inter. 160, 215–229 (2007)

    Article  ADS  CAS  Google Scholar 

  39. Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth. 1, 5–24 (2010)

    Article  ADS  Google Scholar 

  40. Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res. 111, B04409 (2006)

    Article  ADS  Google Scholar 

  41. Lay, T., Hernlund, J. & Buffett, B. A. Core-mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008)

    Article  ADS  CAS  Google Scholar 

  42. Anderson, O. L. The power balance at the core-mantle boundary. Phys. Earth Planet. Inter. 131, 1–17 (2002)

    Article  ADS  Google Scholar 

  43. Jackson, M. G. & Carlson, R. W. An ancient recipe for flood-basalt genesis. Nature (2011)This paper demonstrates the existence of an old and primitive component in mantle plumes.

  44. Zindler, A. & Hart, S. R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    Article  ADS  CAS  Google Scholar 

  45. Hart, S. R., Hauri, H. E., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992)

    Article  ADS  CAS  Google Scholar 

  46. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010)

    Article  ADS  CAS  Google Scholar 

  47. Lesher, C. M. & Arndt, N. T. REE and Nd isotope geochemistry, petrogenesis and volcanic evolution of contaminated komatiites at Kambalda, Western Australia. Lithos 34, 127–157 (1995)

    Article  ADS  CAS  Google Scholar 

  48. Hollings, P., Wyman, D. & Kerrich, R. Komatiite-basalt-rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province. Lithos 46, 137–161 (1999)

    Article  ADS  CAS  Google Scholar 

  49. Hollings, P. & Kerrich, R. Trace element systematics of ultramafic and mafic volcanic rocks from 3 Ga North Caribou greenstone belt, northwest Superior Province. Precambr. Res. 93, 257–279 (1999)

    Article  ADS  CAS  Google Scholar 

  50. Kerrich, R., Polat, A., Wyman, D. & Hollings, P. Trace element systematics of Mg- to Fe-tholeiitic basalt suites of the Superior Province: implications for Archaean mantle reservoirs and greenstone belt genesis. Lithos 46, 163–187 (1999)

    Article  ADS  CAS  Google Scholar 

  51. Campbell, I. H. in The Earth’s Mantle: Composition, Structure and Evolution 259–310 (Cambridge University Press, 1998)

    Google Scholar 

  52. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990)

    Article  ADS  CAS  Google Scholar 

  53. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks—plume heads and tails. Science 246, 103–107 (1989)

    Article  ADS  CAS  Google Scholar 

  54. Griffiths, R. W. & Campbell, I. H. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett. 99, 66–78 (1990)

    Article  ADS  Google Scholar 

  55. Galer, S. J. G. & Goldstein, S. J. in Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S. ) 75–98 (Geophysical Monograph 95, American Geophysical Union, 1996)

    Google Scholar 

  56. Kleine, T. et al. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  ADS  CAS  Google Scholar 

  57. Palme, H., O’Neill, H., St. C & Benz, W. Evidence for collisional erosion of the Earth. Geochim. Cosmochim. Acta 67, A372 (2003)

    Google Scholar 

  58. Caro, G., Bourdon, B., Halliday, A. N. & Quitté, G. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–339 (2008)

    Article  ADS  CAS  Google Scholar 

  59. White, W. M. & Morgan, J. P. Implication of a non-chondritic Earth for terrestrial heat production and geodynamics. Mineral. Mag. (Goldschmidt Conf. Abstr.) 75, 1191 (2011)

    Google Scholar 

  60. The KamLAND Collaboration. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci. 4, 647–651 (2011)

    Article  ADS  Google Scholar 

  61. Caro, G. Early silicate Earth differentiation. Annu. Rev. Earth Planet. Sci. 39, 31–58 (2011)This is a comprehensive review of Nd isotopes.

    Article  ADS  CAS  Google Scholar 

  62. Armstrong, R. L. The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–630 (1991)

    Article  ADS  Google Scholar 

  63. Allègre, C. J., Staudacher, T., Sarda, P. & Kurz, M. Constraints on the evolution of Earth’s mantle from rare-gas systematics. Nature 303, 762–766 (1983)

    Article  ADS  Google Scholar 

  64. Barth, M. G., McDonough, W. F. & Rudnick, R. L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197–213 (2000)

    Article  ADS  CAS  Google Scholar 

  65. O’Nions, R. K. & Oxburgh, E. R. Heat and helium in the Earth. Nature 306, 429–431 (1983)

    Article  ADS  Google Scholar 

  66. Wasson, J. T. & Kallemyn, G. W. Composition of chondrites. Phil. Trans. R. Soc. A325, 535–544 (1988)

    Article  ADS  Google Scholar 

  67. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Amelin and R. Taylor for their comments on an early draft of the paper, C. Allen for preparing Fig. 1 and R. Carlson and B. Bourdon for their detailed and constructive reviews.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Ian H. Campbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Campbell, I., St C. O’Neill, H. Evidence against a chondritic Earth. Nature 483, 553–558 (2012). https://doi.org/10.1038/nature10901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10901

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing