Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2

Abstract

Ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers such as SUMO (also known as Smt3 in Saccharomyces cerevisiae) mediate signal transduction through post-translational modification of substrate proteins in pathways that control differentiation, apoptosis and the cell cycle, and responses to stress such as the DNA damage response. In yeast, the proliferating cell nuclear antigen PCNA (also known as Pol30) is modified by ubiquitin in response to DNA damage and by SUMO during S phase. Whereas Ub–PCNA can signal for recruitment of translesion DNA polymerases, SUMO–PCNA signals for recruitment of the anti-recombinogenic DNA helicase Srs2. It remains unclear how receptors such as Srs2 specifically recognize substrates after conjugation to Ub and Ubls. Here we show, through structural, biochemical and functional studies, that the Srs2 carboxy-terminal domain harbours tandem receptor motifs that interact independently with PCNA and SUMO and that both motifs are required to recognize SUMO–PCNA specifically. The mechanism presented is pertinent to understanding how other receptors specifically recognize Ub- and Ubl-modified substrates to facilitate signal transduction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Srs2 C-terminal domain interacts with PCNA, SUMO and SUMO–PCNA.
Figure 2: Structures of SUMO–PCNA alone and in complex with Srs2.
Figure 3: Srs2 PIP-like motif and SIM interactions with PCNA and SUMO.
Figure 4: Srs2 PIP-like motif and SIM required for recognition of SUMO–PCNA.
Figure 5: Models for Srs2–SUMO–PCNA complexes.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors are deposited in PDB under accession codes 3V60, 3V61 and 3V62.

References

  1. 1

    Kirkin, V. & Dikic, I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19, 199–205 (2007)

    CAS  Article  Google Scholar 

  2. 2

    Gareau, J. R. & Lima, C. D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature Rev. Mol. Cell Biol. 11, 861–871 (2010)

    CAS  Article  Google Scholar 

  3. 3

    Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains – from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009)

    CAS  Article  Google Scholar 

  4. 4

    Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994)

    CAS  Article  Google Scholar 

  6. 6

    Gulbis, J. M., Kelman, Z., Hurwitz, J., O’Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Bruning, J. B. & Shamoo, Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-δ p66 subunit and flap endonuclease-1. Structure 12, 2209–2219 (2004)

    CAS  Article  Google Scholar 

  8. 8

    Vijayakumar, S. et al. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res. 35, 1624–1637 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Scott, M. T., Morrice, N. & Ball, K. L. Reversible phosphorylation at the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferating cell nuclear antigen binding. J. Biol. Chem. 275, 11529–11537 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lawrence, C. W. & Christensen, R. B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139, 866–876 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Ulrich, H. D. PCNASUMO and Srs2: a model SUMO substrate-effector pair. Biochem. Soc. Trans. 35, 1385–1388 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA 101, 14373–14378 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Chang, C. C. et al. Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol. Cell 42, 62–74 (2011)

    CAS  Article  Google Scholar 

  21. 21

    Hishiki, A. et al. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem. 284, 10552–10560 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Yunus, A. A. & Lima, C. D. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol. Cell 35, 669–682 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Yunus, A. A. & Lima, C. D. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol. Biol. 497, 167–186 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Freudenthal, B. D., Brogie, J. E., Gakhar, L., Kondratick, C. M. & Washington, M. T. Crystal structure of SUMO-modified proliferating cell nuclear antigen. J. Mol. Biol. 406, 9–17 (2011)

    CAS  Article  Google Scholar 

  25. 25

    Kazmirski, S. L., Zhao, Y., Bowman, G. D., O’Donnell, M. & Kuriyan, J. Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Proc. Natl Acad. Sci. USA 102, 13801–13806 (2005)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Miyata, T. et al. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc. Natl Acad. Sci. USA 102, 13795–13800 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kelch, B. A., Makino, D. L., O’Donnell, M. & Kuriyan, J. How a DNA polymerase clamp loader opens a sliding clamp. Science 334, 1675–1680 (2011)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bowman, G. D., O’Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex. Nature 429, 724–730 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Sakurai, S. et al. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J. 24, 683–693 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Baba, D. et al. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J. Mol. Biol. 359, 137–147 (2006)

    CAS  Article  Google Scholar 

  32. 32

    Olsen, S. K., Capili, A. D., Lu, X., Tan, D. S. & Lima, C. D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463, 906–912 (2010)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129 (2005)

    CAS  Article  Google Scholar 

  34. 34

    Sekiyama, N. et al. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966–35975 (2008)

    CAS  Article  Google Scholar 

  35. 35

    Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723–732 (2006)

    CAS  Article  Google Scholar 

  36. 36

    Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nature Rev. Mol. Cell Biol. 7, 473–483 (2006)

    CAS  Article  Google Scholar 

  37. 37

    Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Chen, J., Ai, Y., Wang, J., Haracska, L. & Zhuang, Z. Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis. Nature Chem. Biol. 6, 270–272 (2010)

    CAS  Article  Google Scholar 

  39. 39

    Moldovan, G. L. et al. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell 45, 75–86 (2012)

    CAS  Article  Google Scholar 

  40. 40

    Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000)

    CAS  Article  Google Scholar 

  41. 41

    Rayment, I. Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol. 276, 171–179 (1997)

    CAS  Article  Google Scholar 

  42. 42

    Otwinowski, Z. & Minor, W. in Methods in Enzymology vol. 276 (eds Carter, C. W. Jr. & Sweet, R. M. ) 307–326 (Academic Press, 1997)

    Google Scholar 

  43. 43

    Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  44. 44

    Vagin, A. & Teplyakov, A. MOLREP: an automated program from molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)

    CAS  Article  Google Scholar 

  45. 45

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  Article  Google Scholar 

  46. 46

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  47. 47

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    CAS  Article  Google Scholar 

  48. 48

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    CAS  Article  Google Scholar 

  49. 49

    Delano, W. The PyMOL Molecular Graphics System (DeLano Scientific, 2002)

Download references

Acknowledgements

We thank J. Kuriyan and B. Kelch for coordinates of the T4 clamp before publication. NE-CAT beamlines (Advanced Photon Source) supported by RR-15301 (NIH NCRR). APS supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Beamline X29 (National Synchrotron Light Source) supported by the US Department of Energy, the Office of Basic Energy Sciences and P41RR012408 (NIH NCRR). A.A.A., F.M. and C.D.L. are supported by NIH R01 GM065872 to C.D.L. and F32 GM086066 to A.A.A.

Author information

Affiliations

Authors

Contributions

Experiments performed and analysed by A.A.A., F.M. and C.D.L. Manuscript prepared by A.A.A and C.D.L.

Corresponding author

Correspondence to Christopher D. Lima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-14 with legends. (PDF 1709 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Armstrong, A., Mohideen, F. & Lima, C. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483, 59–63 (2012). https://doi.org/10.1038/nature10883

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing