Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å

Abstract

Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes1,2. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes3,4,5. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes4,6,7,8,9,10,11,12,13. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 Å. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: vcCNT is a Na + -coupled nucleoside transporter with a trimeric architecture.
Figure 2: Topology and fold of the vcCNT protomer.
Figure 3: Nucleoside-binding site and Na + -binding site.
Figure 4: Hypothetical mechanism of nucleoside transport.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structure are deposited in the Protein Data Bank under accession code 3TIJ.

References

  1. 1

    King, A. E., Ackley, M. A., Cass, C. E., Young, J. D. & Baldwin, S. A. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol. Sci. 27, 416–425 (2006)

    CAS  Article  Google Scholar 

  2. 2

    Rose, J. B. & Coe, I. R. Physiology of nucleoside transporters: back to the future. Physiology (Bethesda) 23, 41–48 (2008)

    CAS  Google Scholar 

  3. 3

    Cano-Soldado, P. et al. Compensatory effects of the human nucleoside transporters on the response to nucleoside-derived drugs in breast cancer MCF7 cells. Biochem. Pharmacol. 75, 639–648 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Damaraju, V. L. et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22, 7524–7536 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Jordheim, L. P. & Dumontet, C. Review of recent studies on resistance to cytotoxic deoxynucleoside analogues. Biochim. Biophys. Acta 1776, 138–159 (2007)

    CAS  PubMed  Google Scholar 

  6. 6

    Errasti-Murugarren, E. & Pastor-Anglada, M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 11, 809–841 (2010)

    CAS  Article  Google Scholar 

  7. 7

    Mackey, J. R., Baldwin, S. A., Young, J. D. & Cass, C. E. Nucleoside transport and its significance for anticancer drug resistance. Drug Resist. Updat. 1, 310–324 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Mackey, J. R. et al. Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers. Clin. Cancer Res. 8, 110–116 (2002)

    CAS  PubMed  Google Scholar 

  9. 9

    Mackey, J. R. et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 58, 4349–4357 (1998)

    CAS  PubMed  Google Scholar 

  10. 10

    Nagai, K., Nagasawa, K. & Fujimoto, S. Uptake of the anthracycline pirarubicin into mouse M5076 ovarian sarcoma cells via a sodium-dependent nucleoside transport system. Cancer Chemother. Pharmacol. 55, 222–230 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Pastor-Anglada, M., Felipe, A. & Casado, F. J. Transport and mode of action of nucleoside derivatives used in chemical and antiviral therapies. Trends Pharmacol. Sci. 19, 424–430 (1998)

    CAS  Article  Google Scholar 

  12. 12

    Pastor-Anglada, M. et al. Nucleoside transporters in chronic lymphocytic leukaemia. Leukemia 18, 385–393 (2004)

    CAS  Article  Google Scholar 

  13. 13

    Zhang, J. et al. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev. 26, 85–110 (2007)

    Article  Google Scholar 

  14. 14

    Gray, J. H., Owen, R. P. & Giacomini, K. M. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 447, 728–734 (2004)

    CAS  Article  Google Scholar 

  15. 15

    Molina-Arcas, M., Casado, F. J. & Pastor-Anglada, M. Nucleoside transporter proteins. Curr. Vasc. Pharmacol. 7, 426–434 (2009)

    CAS  Article  Google Scholar 

  16. 16

    Ritzel, M. W. et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem. 276, 2914–2927 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Loewen, S. K. et al. Functional characterization of a H+/nucleoside co-transporter (CaCNT) from Candida albicans, a fungal member of the concentrative nucleoside transporter (CNT) family of membrane proteins. Yeast 20, 661–675 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Loewen, S. K. et al. Transport of physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs by recombinant Escherichia coli nucleoside-H+ cotransporter (NupC) produced in Xenopus laevis oocytes. Mol. Membr. Biol. 21, 1–10 (2004)

    MathSciNet  CAS  Article  Google Scholar 

  19. 19

    Xiao, G., Wang, J., Tangen, T. & Giacomini, K. M. A novel proton-dependent nucleoside transporter, CeCNT3, from Caenorhabditis elegans. Mol. Pharmacol. 59, 339–348 (2001)

    CAS  Article  Google Scholar 

  20. 20

    Hamilton, S. R. et al. Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. J. Biol. Chem. 276, 27981–27988 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Slugoski, M. D. et al. Substituted cysteine accessibility method analysis of human concentrative nucleoside transporter hCNT3 reveals a novel discontinuous region of functional importance within the CNT family motif (G/A)XKX3NEFVA(Y/M/F). J. Biol. Chem. 284, 17281–17292 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Zhang, J. et al. Cysteine-accessibility analysis of transmembrane domains 11–13 of human concentrative nucleoside transporter 3. Biochem. J. 394, 389–398 (2006)

    CAS  Article  Google Scholar 

  23. 23

    Cao, Y. et al. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473, 50–54 (2011)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Loewen, S. K. et al. Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem. 274, 24475–24484 (1999)

    CAS  Article  Google Scholar 

  26. 26

    Slugoski, M. D. et al. Conserved glutamate residues Glu-343 and Glu-519 provide mechanistic insights into cation/nucleoside cotransport by human concentrative nucleoside transporter hCNT3. J. Biol. Chem. 284, 17266–17280 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Yao, S. Y. et al. Conserved glutamate residues are critically involved in Na+/nucleoside cotransport by human concentrative nucleoside transporter 1 (hCNT1). J. Biol. Chem. 282, 30607–30617 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Nayal, M. & Di Cera, E. Valence screening of water in protein crystals reveals potential Na+ binding sites. J. Mol. Biol. 256, 228–234 (1996)

    CAS  Article  Google Scholar 

  29. 29

    Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Koszelak-Rosenblum, M. et al. Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci. 18, 1828–1839 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  33. 33

    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    CAS  Article  Google Scholar 

  35. 35

    Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000)

    CAS  Article  Google Scholar 

  36. 36

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  Google Scholar 

  37. 37

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    CAS  Article  Google Scholar 

  38. 38

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010)

    CAS  Article  Google Scholar 

  39. 39

    Lee, S. Y., Letts, J. A. & MacKinnon, R. Functional reconstitution of purified human Hv1 H+ channels. J. Mol. Biol. 387, 1055–1060 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Data for this study were collected at beamlines SER-CAT BM22/ID22 and NE-CAT ID 24-C at the Advanced Photon Source. We thank R. MacKinnon and J. Butterwick for critical reading; R. Lefkowitz and A. Shukla for providing access and technical support for the radioactive flux assay; S. Lockless for advice on experiments; and C. Pemble for help with remote data collection. This work was supported by start-up funds from the Duke University Medical Center, the McKnight Endowment Fund for Neuroscience, the Alfred P. Sloan Foundation, the Klingenstein Fund, the Mallinckrodt foundation, the Basil O’Connor Starter Scholar Research Award 5-FY10-473 from the March of Dimes Foundation, and the National Institutes of Health Director’s New Innovator Award 1 DP2 OD008380-01 (all to S.-Y.L.).

Author information

Affiliations

Authors

Contributions

Z.J. expressed, purified and crystallized vcCNT. Z.J. performed radioactive flux and crosslinking experiments. C.-G.C. participated in part of the vcCNT crystallization and generated mutants for crystallization and functional studies. Z.J. and S.-Y.L. collected and processed the data, solved the structure, and wrote the paper. S.-Y.L. designed the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Seok-Yong Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-7, a Supplementary Discussion and additional references. (PDF 7882 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, Z., Cheong, CG. & Lee, SY. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å. Nature 483, 489–493 (2012). https://doi.org/10.1038/nature10882

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing