Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Field-driven photoemission from nanostructures quenches the quiver motion

Abstract

Strong-field physics, an extreme limit of light–matter interaction1,2,3, is expanding into the realm of surfaces4,5 and nanostructures6,7,8,9,10,11 from its origin in atomic and molecular science12,13,14,15. The attraction of nanostructures lies in two intimately connected features: local intensity enhancement and sub-wavelength confinement of optical fields. Local intensity enhancement facilitates access to the strong-field regime and has already sparked various applications, whereas spatial localization has the potential to generate strong-field dynamics exclusive to nanostructures. However, the observation of features unattainable in gaseous media is challenged by many-body effects and material damage, which arise under intense illumination of dense systems16,17,18,19. Here, we non-destructively access this regime in the solid state by employing single plasmonic nanotips and few-cycle mid-infrared pulses, making use of the wavelength-dependence of the interaction, that is, the ponderomotive energy. We investigate strong-field photoelectron emission and acceleration from single nanostructures over a broad spectral range, and find kinetic energies of hundreds of electronvolts. We observe the transition to a new regime in strong-field dynamics, in which the electrons escape the nanolocalized field within a fraction of an optical half-cycle. The transition into this regime, characterized by a spatial adiabaticity parameter, would require relativistic electrons in the absence of nanostructures. These results establish new degrees of freedom for the manipulation and control of electron dynamics on femtosecond and attosecond timescales, combining optical near-fields and nanoscopic sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electron emission from nanotips using ultrashort mid-infrared fields.
Figure 2: Experimental photoelectron spectra and autocorrelations at mid-infrared wavelengths.
Figure 3: Transition from quiver to sub-cycle electron dynamics.
Figure 4: Impact of field localization on electron dynamics.

References

  1. 1

    Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  2. 2

    Corkum, P. B. Plasma perspective on strong-field ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Paulus, G. G., Becker, W. & Walther, H. Classical rescattering effects in two-color above-threshold ionization. Phys. Rev. A 52, 4043–4053 (1995)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Irvine, S. E., Dechant, A. & Elezzabi, A. Y. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801 (2004)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Rácz, P. et al. Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011)

    ADS  Article  Google Scholar 

  6. 6

    Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011)

    Article  Google Scholar 

  8. 8

    Schenk, M., Krüger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Zherebtsov, S. et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Phys. 7, 656–662 (2011)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Sivis, M., Duwe, M., Abel, B. & Ropers, C. Nanostructure-enhanced atomic line emission. http://dx.doi.org/10.1038/nature10978 Nature (in the press)

  12. 12

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    ADS  Article  Google Scholar 

  14. 14

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nature Phys. 4, 386–389 (2008)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Gilton, T. L., Cowin, J. P., Kubiak, G. D. & Hamza, A. V. Intense surface photoemission: space charge effects and self-acceleration. J. Appl. Phys. 68, 4802–4810 (1990)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Aeschlimann, M. et al. Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit. J. Chem. Phys. 102, 8606–8613 (1995)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Petite, G., Agostini, P., Trainham, R., Mevel, E. & Martin, P. Origin of the high-energy electron emission from metals under laser irradiation. Phys. Rev. B 45, 12210–12217 (1992)

    CAS  Article  Google Scholar 

  19. 19

    Passlack, S. et al. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. 100, 024912 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905)

    Article  Google Scholar 

  21. 21

    Lenard, P. Ueber die lichtelektrische Wirkung. Ann. Phys. [transl. C.R. and G.H.]. 313, 149–198 (1902)

    Article  Google Scholar 

  22. 22

    Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006)

    ADS  Article  Google Scholar 

  26. 26

    Süßmann, F. & Kling, M. F. Attosecond nanoplasmonic streaking of localized fields near metal nanospheres. Phys. Rev. B 84, 121406 (2011)

    ADS  Article  Google Scholar 

  27. 27

    Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nature Photon. 1, 539–544 (2007)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Yalunin, S. V., Gulde, M. & Ropers, C. Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84, 195426 (2011)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Bormann, F. Schenk, M. Sivis and S. V. Yalunin for discussions. Financial support by the Deutsche Forschungsgemeinschaft (DFG-ZUK 45/1 and SPP 1391) is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

All authors were closely involved in this study and contributed to the ideas, realization of the experiments, data analysis and interpretation, and writing of the paper.

Corresponding author

Correspondence to C. Ropers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Figures 1-5. (PDF 493 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herink, G., Solli, D., Gulde, M. et al. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012). https://doi.org/10.1038/nature10878

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing