Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental verification of Landauer’s principle linking information and thermodynamics


In 1961, Rolf Landauer argued that the erasure of information is a dissipative process1. A minimal quantity of heat, proportional to the thermal energy and called the Landauer bound, is necessarily produced when a classical bit of information is deleted. A direct consequence of this logically irreversible transformation is that the entropy of the environment increases by a finite amount. Despite its fundamental importance for information theory and computer science2,3,4,5, the erasure principle has not been verified experimentally so far, the main obstacle being the difficulty of doing single-particle experiments in the low-dissipation regime. Here we experimentally show the existence of the Landauer bound in a generic model of a one-bit memory. Using a system of a single colloidal particle trapped in a modulated double-well potential, we establish that the mean dissipated heat saturates at the Landauer bound in the limit of long erasure cycles. This result demonstrates the intimate link between information theory and thermodynamics. It further highlights the ultimate physical limit of irreversible computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The erasure protocol used in the experiment.
Figure 2: Erasure cycles and typical trajectories.
Figure 3: Erasure rate and approach to the Landauer limit.

Similar content being viewed by others


  1. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Landauer, R. Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988)

    Article  ADS  Google Scholar 

  3. Lloyd, S. Ultimate physical limits to computation. Nature 406, 1047–1054 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Meindl, J. D. & Davis, J. A. The fundamental limit on binary switching energy for terascale integration. IEEE J. Solid-state Circuits 35, 1515–1516 (2000)

    Article  ADS  Google Scholar 

  5. Plenio, M. B. & Vitelli, V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 42, 25–60 (2001)

    Article  ADS  Google Scholar 

  6. Brillouin, L. Science and Information Theory (Academic, 1956)

    Book  MATH  Google Scholar 

  7. Leff, H. S. & Rex, A. F. Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (IOP, 2003)

    Google Scholar 

  8. Maruyama, K., Nori, F. & Vedral, V. The physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1–23 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Szilard, L. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Z. Phys. 53, 840–856 (1929)

    Article  ADS  CAS  Google Scholar 

  10. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Phys. 6, 988–992 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, 1970)

    MATH  Google Scholar 

  12. Bennett, C. H. The thermodynamics of computation: a review. Int. J. Theor. Phys. 21, 905–940 (1982)

    Article  CAS  Google Scholar 

  13. Bennett, C. H. Logical reversibility of computation. IBM J. Res. Develop. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shizume, K. Heat generation required by information erasure. Phys. Rev. E 52, 3495–3499 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Piechocinska, P. Information erasure. Phys. Rev. A 61, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dillenschneider, R. & Lutz, E. Memory erasure in small systems. Phys. Rev. Lett. 102, 210601 (2009)

    Article  ADS  PubMed  Google Scholar 

  17. Earman, J. & Norton, J. D. EXORCIST XIV: The wrath of Maxwell’s demon. Part II. From Szilard to Landauer and beyond. Stud. Hist. Phil. Sci. B 30, 1–40 (1999)

    MATH  Google Scholar 

  18. Shenker, O. R. Logic and entropy. Preprint at 〈〉 (2000)

  19. Maroney, O. J. E. The (absence of a) relationship between thermodynamic and logical reversibility. Studies Hist. Phil. Sci. B 36, 355–374 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Norton, J. D. Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Phil. Sci. B 36, 375–411 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

    Article  ADS  PubMed  Google Scholar 

  22. Norton, J. D. Waiting for Landauer. Stud. Hist. Phil. Sci. B 42, 184–198 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Frank, M. P. The physical limits of computing. Comput. Sci. Eng. 4, 16–26 (2002)

    Article  CAS  Google Scholar 

  24. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010)

    Article  CAS  Google Scholar 

  25. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Blickle, V., Speck, T., Helden, L., Seifert, U. & Bechinger, C. Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Jop, P., Petrosyan, A. & Ciliberto, S. Work and dissipation fluctuations near the stochastic resonance of a colloidal particle. Europhys. Lett. 81, 50005 (2008)

    Article  ADS  Google Scholar 

  28. Gomez-Solano, J. R., Petrosyan, A., Ciliberto, S., Chetrite, R. & Gawedzki, K. Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Sekimoto, K. Stochastic Energetics (Springer, 2010)

    Book  MATH  Google Scholar 

  30. Sekimoto, K. & Sasa, S. I. Complementarity relation for irreversible process derived from stochastic energetics. J. Phys. Soc. Jpn 6, 3326–3328 (1997)

    Article  ADS  Google Scholar 

Download references


This work was supported by the Emmy Noether Program of the DFG (contract no. LU1382/1-1), the Cluster of Excellence Nanosystems Initiative Munich (NIM), DAAD, and the Research Center Transregio 49 of the DFG.

Author information

Authors and Affiliations



All authors contributed substantially to this work.

Corresponding author

Correspondence to Eric Lutz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bérut, A., Arakelyan, A., Petrosyan, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing