Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uncovering the Neoproterozoic carbon cycle

Abstract

Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter1,2. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10–100 million years) characterized by δ13C in carbonate (δ13Ccarb) enriched to more than +5 per mil. Classically, δ13Ccarb is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments2,3,4, which can be linked to oxygen accumulation through the stoichiometry of primary production3,5. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ13Ccarb and δ13C in organic carbon (δ13Corg) will covary, offset by the fractionation imparted by primary production5. The documentation of several Neoproterozoic δ13Ccarb excursions that are decoupled from δ13Corg, however, indicates that other mechanisms6,7,8 may account for these excursions. Here we present δ13C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ13Ccarb excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis7,8 or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir6. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ13Ccarb anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemostratigraphic sections through the Tayshir member in the Uliastay and Tsagaan Gols (river valleys), Mongolia13.
Figure 2: A chemostratigraphic section through the late Cryogenian period of northwest Canada.
Figure 3: A two-component mixing model built to address variability of δ 13 C with changes in TOC.

Similar content being viewed by others

References

  1. Halverson, G. P., Wade, B. P., Hurtgen, M. T. & Barovich, K. M. Neoproterozoic chemostratigraphy. Precambr. Res. 182, 337–350 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and east Greenland. Nature 321, 832–838 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Kaufman, A. J., Knoll, A. H. & Narbonne, G. M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl Acad. Sci. USA 94, 6600–6605 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of C-13 in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006)

    Article  ADS  CAS  Google Scholar 

  11. McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Grotzinger, J. P., Fike, D. A. & Fischer, W. W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geosci. 4, 285–292 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Macdonald, F. A., Jones, D. S. & Schrag, D. P. Stratigraphic and tectonic implications of a new glacial diamictite-cap carbonate couplet in southwestern Mongolia. Geology 37, 123–126 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. Toward a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 117, 1181–1207 (2005)

    Article  ADS  Google Scholar 

  15. McCay, G. A., Prave, A. R., Alsop, G. I. & Fallick, A. E. Glacial trinity: Neoproterozoic Earth history within the British-Irish Caledonides. Geology 34, 909–912 (2006)

    Article  ADS  Google Scholar 

  16. McKirdy, D. M. et al. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide fold-thrust belt, South Australia. Precambr. Res. 106, 149–186 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Halverson, G. P., Hoffman, P. F., Schrag, D. P. & Kaufman, A. J. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem. Geophys. Geosyst. 3, 1035, http://dx.doi.org/10.1029/2001GC000244 (2002)

    Article  ADS  Google Scholar 

  18. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Hoffmann, K. H., Condon, D. J., Bowring, S. A. & Crowley, J. L. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation. Geology 32, 817–820 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Macdonald, F. A. et al. Calibrating the Cryogenian. Science 327, 1241–1243 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Swanson-Hysell, N. L. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Dehler, C. M. et al. High-resolution delta C-13 stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: implications for mid-Neoproterozoic climate change. Geol. Soc. Am. Bull. 117, 32–45 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Tziperman, E., Halevy, I., Johnston, D. T., Knoll, A. H. & Schrag, D. P. Biologically induced Snowball Earth. Proc. Natl Acad. Sci. 108 (37). 15091–15096 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006)

    Article  CAS  Google Scholar 

  26. Schrag, D. P., Berner, R. A., Hoffman, P. F. & Halverson, G. P. On the initiation of a snowball Earth. Geochem. Geophys. Geosyst. 3, 1036, http://dx.doi.org/10.1029/2001gc000219 (2002)

    Article  Google Scholar 

  27. Halverson, G. P., Hoffman, P. F., Schrag, D. P. & Kaufman, A. J. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem. Geophys. Geosyst. 3, 1035, http://dx.doi.org/10.1029/2001gc000244 (2002)

    Article  ADS  Google Scholar 

  28. Bjerrum, C. J. & Canfield, D. E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 108, 5542–5547 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Bristow, T. F. & Kennedy, M. J. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology 36, 863–866 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Johnston, D. T. et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64–73 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Levashova, N. M. et al. The origin of the Baydaric microcontinent, Mongolia: constraints from paleomagnetism and geochronology. Tectonophysics 485, 306–320 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Laboratory assistance was provided by G. Eischeid, E. Northrop, E. Kennedy, T. O’Brien, A. Breus and A. Masterson. We thank G. Halverson, A. Bradley, E. Tziperman and P. Huybers for discussions and comments. We thank the Yukon Geological Survey, the NSF (grant number EAR-IF 0949227 to D.T.J.), KINSC (Haverford College), Henry and Wendy Breck (to D.P.S.), ESEP (Canadian Institute for Advanced Research, to P.F.H.), Harvard University and NASA NAI (D.T.J. and F.A.M.) for funding.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by D.T.J., F.A.M. and D.P.S. Field work was conducted by F.A.M. and P.F.H. Carbonate carbon analyses were performed by F.A.M. Organic carbon analyses and modelling were carried out by D.T.J. and B.C.G. The paper was written by all authors.

Corresponding author

Correspondence to D. T. Johnston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Data, Methods and Materials, Supplementary Figures 1-8 with legends, Supplementary Table 1 and Supplementary References. (PDF 1673 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, D., Macdonald, F., Gill, B. et al. Uncovering the Neoproterozoic carbon cycle. Nature 483, 320–323 (2012). https://doi.org/10.1038/nature10854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10854

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing