Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Circadian rhythms govern cardiac repolarization and arrhythmogenesis

Abstract

Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease1,2, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure)3,4,5 or pattern (for example, Brugada’s syndrome)6 of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current7. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Klf15 expression, ECG QTc interval and expression of repolarizing ion channels exhibit endogenous circadian rhythm.
Figure 2: Klf15 regulates KChIP2 expression in the heart.
Figure 3: Deficiency or excess of Klf15 modulates rhythmic variation in repolarization.
Figure 4: Klf15 deficiency or excess increases susceptibility to ventricular arrhythmias.

Similar content being viewed by others

References

  1. Muller, J. E. et al. Circadian variation in the frequency of sudden cardiac death. Circulation 75, 131–138 (1987)

    Article  CAS  Google Scholar 

  2. Matsuo, K. et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur. Heart J. 20, 465–470 (1999)

    Article  CAS  Google Scholar 

  3. Goldenberg, I. & Moss, A. J. Long QT syndrome. J. Am. Coll. Cardiol. 51, 2291–2300 (2008)

    Article  Google Scholar 

  4. Patel, U. & Pavri, B. B. Short QT syndrome: a review. Cardiol. Rev. 17, 300–303 (2009)

    Article  Google Scholar 

  5. Tomaselli, G. F. & Marban, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42, 270–283 (1999)

    Article  CAS  Google Scholar 

  6. Antzelevitch, C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am. J. Physiol. Heart Circ. Physiol. 293, H2024–H2038 (2007)

    Article  CAS  Google Scholar 

  7. Kuo, H. C. et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of Ito and confers susceptibility to ventricular tachycardia. Cell 107, 801–813 (2001)

    Article  CAS  Google Scholar 

  8. Antzelevitch, C. & Yan, G. X. J wave syndromes. Heart Rhythm 7, 549–558 (2010)

    Article  Google Scholar 

  9. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Bexton, R. S., Vallin, H. O. & Camm, A. J. Diurnal variation of the QT interval—influence of the autonomic nervous system. Br. Heart J. 55, 253–258 (1986)

    Article  CAS  Google Scholar 

  11. Kong, T. Q., Jr, Goldberger, J. J., Parker, M., Wang, T. & Kadish, A. H. Circadian variation in human ventricular refractoriness. Circulation 92, 1507–1516 (1995)

    Article  Google Scholar 

  12. Martino, T. A. & Sole, M. J. Molecular time: an often overlooked dimension to cardiovascular disease. Circ. Res. 105, 1047–1061 (2009)

    Article  CAS  Google Scholar 

  13. Paschos, G. K. & FitzGerald, G. A. Circadian clocks and vascular function. Circ. Res. 106, 833–841 (2010)

    Article  CAS  Google Scholar 

  14. Durgan, D. J. & Young, M. E. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ. Res. 106, 647–658 (2010)

    Article  CAS  Google Scholar 

  15. Yamashita, T. et al. Circadian variation of cardiac K+ channel gene expression. Circulation 107, 1917–1922 (2003)

    Article  Google Scholar 

  16. Haldar, S. M. et al. Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation. Sci. Transl. Med. 2, 26ra26 (2010)

    Article  Google Scholar 

  17. Wang, B. et al. The Krüppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J. Mol. Cell. Cardiol. 45, 193–197 (2008)

    Article  CAS  Google Scholar 

  18. Fisch, S. et al. Krüppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc. Natl Acad. Sci. USA 104, 7074–7079 (2007); correction. 104, 13851 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000)

    Article  CAS  Google Scholar 

  20. Sanbe, A. et al. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ. Res. 92, 609–616 (2003)

    Article  CAS  Google Scholar 

  21. Tuteja, G., Jensen, S. T., White, P. & Kaestner, K. H. Cis-regulatory modules in the mammalian liver: composition depends on strength of Foxa2 consensus site. Nucleic Acids Res. 36, 4149–4157 (2008)

    Article  CAS  Google Scholar 

  22. Ripperger, J. A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genet. 38, 369–374 (2006)

    Article  CAS  Google Scholar 

  23. Mitchell, G. F., Jeron, A. & Koren, G. Measurement of heart rate and Q-T interval in the conscious mouse. Am. J. Physiol. 274, H747–H751 (1998)

    CAS  Google Scholar 

  24. Libbus, I., Wan, X. & Rosenbaum, D. S. Electrotonic load triggers remodeling of repolarizing current Ito in ventricle. Am. J. Physiol. Heart Circ. Physiol. 286, H1901–H1909 (2004)

    Article  CAS  Google Scholar 

  25. Wagner, S. et al. Ca/calmodulin kinase II differentially modulates potassium currents. Circ. Arrhythm. Electrophysiol. 2, 285–294 (2009)

    Article  CAS  Google Scholar 

  26. van Oort, R. J. et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122, 2669–2679 (2010)

    Article  CAS  Google Scholar 

  27. Nelson, W., Tong, Y. L., Lee, J. K. & Halberg, F. Methods for cosinor-rhythmometry. Chronobiologia 6, 305–323 (1979)

    CAS  Google Scholar 

  28. Hu, K., Scheer, F. A., Laker, M., Smales, C. & Shea, S. A. Endogenous circadian rhythm in vasovagal response to head-up tilt. Circulation 123, 961–970 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. F. Connors Jr for support, M. Mustar for illustrations, Y. Cui for experimental assistance, and members of the Jain laboratory for discussions. Funding sources: Heart Rhythm Society Fellowship (D.J.); National Institutes of Health grants HL094660 (D.J.), HL066991 (M.D.M.), HL086614 (S.M.H.), American Heart Association postdoctoral grant (N.S.), HL089598, HL091947 (X.H.W.), HL76446 (S.A.S.), HL102241 (K.H.), HL054807 (D.S.R.), HL075427, HL076754, HL084154, HL086548 and HL097595 (M.K.J.); Swiss National Science Foundation grants 31003A/131086 (U.A.) and M01-RR02635 (B.W.H.); Leducq Foundation grants of the ENAFRA Network 07CVD03 (S.D.); and the Centre National de la Recherche Scientifique (S.D.).

Author information

Authors and Affiliations

Authors

Contributions

D.J. and M.K.J. designed the research; D.J., S.M.H., X.W., M.D.M., J.A.R., Y.L., B.L.E. and M.J.C. carried out the experiments; J.G., A.S., J.R. and R.V.K. contributed critical reagents; D.J., N.S., S.D., R.V.K., S.A.S., U.A., X.H.T.W., D.S.R. and M.K.J. supervised the research; D.J., S.M.H., X.W., M.D.M., J.A.R., K.H., B.L.E., E.F., S.A.S., U.A., X.H.T.W., D.S.R. and M.K.J. analysed and interpreted the data; and D.J. and M.K.J. wrote the manuscript.

Corresponding authors

Correspondence to Darwin Jeyaraj or Mukesh K. Jain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-13 with legends. (PDF 351 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyaraj, D., Haldar, S., Wan, X. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96–99 (2012). https://doi.org/10.1038/nature10852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10852

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing