Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent contributions of glaciers and ice caps to sea level rise

Abstract

Glaciers and ice caps (GICs) are important contributors to present-day global mean sea level rise1,2,3,4. Most previous global mass balance estimates for GICs rely on extrapolation of sparse mass balance measurements1,2,4 representing only a small fraction of the GIC area, leaving their overall contribution to sea level rise unclear. Here we show that GICs, excluding the Greenland and Antarctic peripheral GICs, lost mass at a rate of 148 ± 30 Gt yr−1 from January 2003 to December 2010, contributing 0.41 ± 0.08 mm yr−1 to sea level rise. Our results are based on a global, simultaneous inversion of monthly GRACE-derived satellite gravity fields, from which we calculate the mass change over all ice-covered regions greater in area than 100 km2. The GIC rate for 2003–2010 is about 30 per cent smaller than the previous mass balance estimate that most closely matches our study period2. The high mountains of Asia, in particular, show a mass loss of only 4 ± 20 Gt yr−1 for 2003–2010, compared with 47–55 Gt yr−1 in previously published estimates2,5. For completeness, we also estimate that the Greenland and Antarctic ice sheets, including their peripheral GICs, contributed 1.06 ± 0.19 mm yr−1 to sea level rise over the same time period. The total contribution to sea level rise from all ice-covered regions is thus 1.48 ± 0.26 mm −1, which agrees well with independent estimates of sea level rise originating from land ice loss and other terrestrial sources6.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mascons for the ice-covered regions considered here.
Figure 2: Mass change during 2003–2010 for all GIC regions shown in Fig. 1 and Table 1 .
Figure 3: HMA mass balance determination.

References

  1. Cogley, J. G. Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96–100 (2009)

    ADS  Article  Google Scholar 

  2. Dyurgerov, M. B. Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Data Glaciol. Stud. 108, 1–116 (2010)

    Google Scholar 

  3. Hock, R., de Woul, M., Radic, V. & Dyurgerov, M. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501 (2009)

    ADS  Article  Google Scholar 

  4. Meier, M. F. et al. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317, 1064–1067 (2007)

    CAS  ADS  Article  Google Scholar 

  5. Matsuo, K. & Heki, K. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet. Sci. Lett. 290, 30–36 (2010)

    CAS  ADS  Article  Google Scholar 

  6. Willis, J. K., Chambers, D. P., Kuo, C. Y. & Shum, C. K. Global sea level rise, recent progress and challenges for the decade to come. Oceanography (Wash. DC) 23, 26–35 (2010)

    Article  Google Scholar 

  7. Hirabayashi, Y., Doll, P. & Kanae, S. Global-scale modeling of glacier mass balances for water resources assessments: glacier mass changes between 1948 and 2006. J. Hydrol. (Amst.) 390, 245–256 (2010)

    ADS  Article  Google Scholar 

  8. Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F. & Ohmura, A. Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett. 33, L19501 (2006)

    ADS  Article  Google Scholar 

  9. Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)

    ADS  Article  Google Scholar 

  10. Wahr, J., Swenson, S., Zlotnicki, V. & Velicogna, I. Time-variable gravity from GRACE: first results. Geophys. Res. Lett. 31, L11501 (2004)

    ADS  Article  Google Scholar 

  11. Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D. & Ivins, E. R. Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys. Res. Lett. 34, L22501 (2007)

    ADS  Article  Google Scholar 

  12. Gardner, A. S. et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357–360 (2011)

    CAS  ADS  Article  Google Scholar 

  13. Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J. & Larsen, C. F. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 54, 767–777 (2008)

    ADS  Article  Google Scholar 

  14. Riva, R. E. M., Bamber, J. L., Lavallee, D. A. & Wouters, B. Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys. Res. Lett. 37, L19605 (2010)

    ADS  Article  Google Scholar 

  15. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011)

    ADS  Article  Google Scholar 

  16. Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009)

    ADS  Article  Google Scholar 

  17. Raup, B. H., Kieffer, H. H., Hare, J. M. & Kargel, J. S. Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: glaciers. IEEE Trans. Geosci. Remote Sens. 38, 1105–1112 (2000)

    ADS  Article  Google Scholar 

  18. Brown, J., Ferrians, O. J., Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. National Snow and Ice Data Center/World Data Center for Glaciology (1998, revised, February 2001)

    Google Scholar 

  19. Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 36, L19503 (2009)

    ADS  Article  Google Scholar 

  20. Cogley, J. G. in Future Climates of the World (eds Henderson-Sellers, A. & McGuffie, K. ) 189–214 (Elsevier, 2012)

    Google Scholar 

  21. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009)

    CAS  ADS  Article  Google Scholar 

  22. Bettinelli, P. et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J. Geod. 80, 567–589 (2006)

    ADS  Article  Google Scholar 

  23. Jackson, M. & Bilham, R. Constraints on Himalayan deformation inferred from vertical velocity-fields in Nepal and Tibet. J. Geophys. Res. Solid Earth 99, 13897–13912 (1994)

    Article  Google Scholar 

  24. Zhong, S. J. & Zuber, M. T. Crustal compensation during mountain-building. Geophys. Res. Lett. 27, 3009–3012 (2000)

    ADS  Article  Google Scholar 

  25. Lemoine, F. et al. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center. (1998)

  26. Cheng, M. K. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004)

    ADS  Article  Google Scholar 

  27. Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 113, B08410 (2008)

    ADS  Article  Google Scholar 

  28. Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005)

    ADS  Article  Google Scholar 

  29. Ivins, E. R. & James, T. S. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31, L24613 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Geruo A for providing the glacial isostatic adjustment model, and G. Cogley, G. Kaser, I. Velicogna, T. Perron and M. Tamisiea for comments. This work was partially supported by NASA grants NNX08AF02G and NNXI0AR66G, and by NASA’s ‘Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Program’.

Author information

Authors and Affiliations

Authors

Contributions

T.J. and J.W. developed the study and wrote the paper. W.T.P. and S.S. discussed, commented on and improved the manuscript. S.S. provided the CLM4 hydrology model output.

Corresponding author

Correspondence to John Wahr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, additional references, Supplementary Figures 1-6 with legends and Supplementary Tables 1-2. (PDF 1193 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacob, T., Wahr, J., Pfeffer, W. et al. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012). https://doi.org/10.1038/nature10847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10847

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing