The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila


Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression1, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Drosophila mir-34 expression is upregulated with age.
Figure 2: miR-34 modulates age-associated processes.
Figure 3: The Drosophila Eip74EF gene is a target of miR-34 in modulation of the ageing process.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data can be found in the Gene Expression Omnibus (GEO) of NCBI through accession number GSE25009.


  1. 1

    Amaducci, L. & Tesco, G. Aging as a major risk for degenerative diseases of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994)

    CAS  Article  Google Scholar 

  2. 2

    Eacker, S. M., Dawson, T. M. & Dawson, V. L. Understanding microRNAs in neurodegeneration. Nature Rev. Neurosci. 10, 837–841 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Bilen, J., Liu, N., Burnett, B. G., Pittman, R. N. & Bonini, N. M. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 24, 157–163 (2006)

    CAS  Article  Google Scholar 

  4. 4

    Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005)

    CAS  Article  PubMed Central  Google Scholar 

  5. 5

    Liu, N. et al. The exoribonuclease Nibbler controls 3′ end processing of microRNAs in Drosophila. Curr. Biol. 21, 1888–1893 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  6. 6

    Han, B. W. H. u. n. g. J. H., Weng, Z., Zamore, P. D. & Ameres, S. L. The 3′-to-5′ exoribonuclease Nibbler shapes the 3′ ends of microRNAs bound to Drosophila Argonaute1. Curr. Biol. 21, 1878–1887 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  7. 7

    Chung, W. J., Okamura, K., Martin, R. & Lai, E. C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr. Biol. 18, 795–802 (2008)

    CAS  Article  PubMed Central  Google Scholar 

  8. 8

    Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M. & Benzer, S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 17, 7425–7432 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Cao, K., Chen-Plotkin, A. S., Plotkin, J. B. & Wang, L. S. Age-correlated gene expression in normal and neurodegenerative human brain tissues. PLoS ONE 5, (2010)

  10. 10

    Simon, A. F., Shih, C., Mack, A. & Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science 299, 1407–1410 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Fletcher, J. C. & Thummel, C. S. The Drosophila E74 gene is required for the proper stage- and tissue-specific transcription of ecdysone-regulated genes at the onset of metamorphosis. Development 121, 1411–1421 (1995)

    CAS  PubMed  Google Scholar 

  12. 12

    Fletcher, J. C., D’Avino, P. P. & Thummel, C. S. A steroid-triggered switch in E74 transcription factor isoforms regulates the timing of secondary-response gene expression. Proc. Natl Acad. Sci. USA 94, 4582–4586 (1997)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008)

    CAS  Article  PubMed Central  Google Scholar 

  14. 14

    Warrick, J. M. et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949 (1998)

    CAS  Article  Google Scholar 

  15. 15

    Hirth, F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol. Disord. Drug Targets 9, 504–523 (2010)

    CAS  Article  PubMed Central  Google Scholar 

  16. 16

    Williams, G. C. Pleitropy, natural selection and the evolution of senescence. Evolution 11, 398–411 (1957)

    Article  Google Scholar 

  17. 17

    Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Boehm, M. & Slack, F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954–1957 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    de Lencastre, A. et al. MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol. 20, 2159–2168 (2010)

    CAS  Article  PubMed Central  Google Scholar 

  20. 20

    Ibanez-Ventoso, C. et al. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5, 235–246 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Bak, M. et al. MicroRNA expression in the adult mouse central nervous system. RNA 14, 432–444 (2008)

    CAS  Article  PubMed Central  Google Scholar 

  22. 22

    Zovoilis, A. et al. microRNA-34c is a novel target to treat dementias. EMBO J. 30, 4299–4308 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  23. 23

    Minones-Moyano, E. et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet. 20, 3067–3078 (2011)

    CAS  Article  Google Scholar 

  24. 24

    Li, X., Khanna, A., Li, N. & Wang, E. Circulatory miR34a as an RNA based, noninvasive biomarker for brain aging. Aging 3, 985–1002 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  25. 25

    Khanna, A., Muthusamy, S., Liang, R., Sarojini, H. & Wang, E. Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging 3, 223–236 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  26. 26

    Gaughwin, P. M. et al. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum. Mol. Genet. 20, 2225–2237 (2011)

    CAS  Article  Google Scholar 

  27. 27

    Yang, J. et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 10.1007/s11357-011-9324-3 (2011)

  28. 28

    Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004)

    CAS  Article  PubMed Central  Google Scholar 

  29. 29

    Li, L. B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111 (2008)

    ADS  CAS  Article  PubMed Central  Google Scholar 

  30. 30

    Dockendorff, T. C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973–984 (2002)

    CAS  Article  Google Scholar 

  31. 31

    Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Grün, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLOS Comput. Biol. 1, e13 (2005)

    ADS  Article  PubMed Central  Google Scholar 

  33. 33

    Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)

    Article  PubMed Central  Google Scholar 

Download references


We thank C. Thummel, T. Jongens and A. Bashirullah for reagents. We are grateful to A. Cashmore, A. Burguete, J. Kim, S. Cherry, B. Gregory, A. Gitler and the Bonini laboratory for discussion and critical reading of the manuscript. We thank X. Teng for assistance with fly paraffin section. This work was funded by the NINDS (R01-NS043578) and the Ellison Foundation (to N.M.B.). L.-S.W. and K.C. are supported by a pilot grant from Penn Genome Frontiers Institute. L.-S.W. is supported by NIA (U01-AG-032984-02 and RC2-AG036528-01) and a Penn Institute on Aging pilot grant (AG010124). N.M.B. is an Investigator of the Howard Hughes Medical Institute. J.R.K. received support from NIH T32 AG00255.

Author information




N.L. and N.M.B. conceived and designed the project. N.L., M.L., M.A., G.-J.H., J.R.K. and Y.Z. planned, executed and analysed experiments. K.C. and L.S.-W. performed aging computational modelling. N.L. and N.M.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Nancy M. Bonini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with legends, Supplementary Table 1 and additional references. (PDF 5144 kb)

Supplementary Table 2

This table contains the age-correlated probesets. The dd*dir value describes if a particular gene is upregulated (positive value) or downregulated (negative value) as well as the slope of the change compared to the diagonal. In miR-34 mutants, a large number of probesets have a positive dd*dir value, meaning they show higher expression and change faster compared to age-matched controls. (XLS 74 kb)

Supplementary Table 3

This table contains the DAVID functional analysis of probesets positively and negatively correlated with age. DAVID functional analysis of the probesets positively and negatively correlated with age (See Supplementary Table S2) extracted from microarray analysis of control animal brains. These two sets were enriched for different functional terms. Terms with significance p<0.001 are listed. (XLS 28 kb)

Supplementary Table 4

This table contains a summary of lifespan results. For lifespan analysis, flies were generated in the same uniform homogeneous genetic background, 5905. Log-rank test was used for statistics analysis. (XLS 24 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, N., Landreh, M., Cao, K. et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519–523 (2012).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing