Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supercontinent cycles and the calculation of absolute palaeolongitude in deep time



Traditional models of the supercontinent cycle predict that the next supercontinent—‘Amasia’—will form either where Pangaea rifted (the ‘introversion’1 model) or on the opposite side of the world (the ‘extroversion’2,3,4 models). Here, by contrast, we develop an ‘orthoversion’5 model whereby a succeeding supercontinent forms 90° away, within the great circle of subduction encircling its relict predecessor. A supercontinent aggregates over a mantle downwelling but then influences global-scale mantle convection to create an upwelling under the landmass6. We calculate the minimum moment of inertia about which oscillatory true polar wander occurs owing to the prolate shape of the non-hydrostatic Earth5,7. By fitting great circles to each supercontinent’s true polar wander legacy, we determine that the arc distances between successive supercontinent centres (the axes of the respective minimum moments of inertia) are 88° for Nuna to Rodinia and 87° for Rodinia to Pangaea—as predicted by the orthoversion model. Supercontinent centres can be located back into Precambrian time, providing fixed points for the calculation of absolute palaeolongitude over billion-year timescales. Palaeogeographic reconstructions additionally constrained in palaeolongitude will provide increasingly accurate estimates of ancient plate motions and palaeobiogeographic affinities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supercontinent cycle hypotheses.
Figure 2: Supercontinent centres.
Figure 3: Absolute palaeogeographic maps.

Similar content being viewed by others


  1. Nance, R. D., Worsley, T. R. & Moody, J. B. The supercontinent cycle. Sci. Am. 259, 72–79 (1988)

    Article  ADS  Google Scholar 

  2. Hartnady, C. J. H. About turn for supercontinents. Nature 352, 476–478 (1991)

    Article  ADS  Google Scholar 

  3. Hatton, C. J. The superocean cycle. S. Afr. J. Geol. 100, 301–310 (1997)

    CAS  Google Scholar 

  4. Veevers, J. J., Walter, M. R. & Scheibner, E. Neoproterozoic tectonics of Australia—Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m.y. Pangean supercycle. J. Geol. 105, 225–242 (1997)

    Article  CAS  ADS  Google Scholar 

  5. Evans, D. A. D. True polar wander and supercontinents. Tectonophysics 362, 303–320 (2003)

    Article  ADS  Google Scholar 

  6. Zhong, S. J., Zhang, N., Li, Z. X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett. 261, 551–564 (2007)

    Article  CAS  ADS  Google Scholar 

  7. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008)

    Article  CAS  ADS  Google Scholar 

  8. Hoffman, P. F. in Earth Structure: An Introduction to Structural Geology and Tectonics (eds van der Pluijm, B. & Marshak, S. ) 459–464 (McGraw-Hill, 1997)

    Google Scholar 

  9. Murphy, J. B., Nance, R. D. & Cawood, P. A. Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Res. 15, 408–420 (2009)

    Article  ADS  Google Scholar 

  10. Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)

    Article  ADS  Google Scholar 

  11. Mitchell, R. N., Evans, D. A. D. & Kilian, T. M. Rapid Early Cambrian rotation of Gondwana. Geology 38, 755–758 (2010)

    Article  ADS  Google Scholar 

  12. Van der Voo, R. True polar wander during the middle Paleozoic? Earth Planet. Sci. Lett. 122, 239–243 (1994)

    Article  ADS  Google Scholar 

  13. Caputo, M. V. & Crowell, J. C. Migration of glacial centers across Gondwana during Paleozoic Era. Geol. Soc. Am. Bull. 96, 1020–1036 (1985)

    Article  ADS  Google Scholar 

  14. Schmidt, P. W. & Williams, G. E. Ediacaran palaeomagnetism and apparent polar wander path for Australia: no large true polar wander. Geophys. J. Int. 182, 711–726 (2010)

    Article  ADS  Google Scholar 

  15. Burke, K., Steinberger, B., Torsvik, T. & Smethurst, M. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008)

    Article  CAS  ADS  Google Scholar 

  16. Torsvik, T., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352–355 (2010)

    Article  CAS  ADS  Google Scholar 

  17. Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. Int. 43, 163–200 (1975)

    Article  ADS  Google Scholar 

  18. Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geol. Soc. Am. Bull. 118, 1099–1124 (2006)

    Article  CAS  ADS  Google Scholar 

  19. Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr. Res. 160, 179–210 (2008)

    Article  CAS  ADS  Google Scholar 

  20. Evans, D. A. D. & Mitchell, R. N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443–446 (2011)

    Article  ADS  Google Scholar 

  21. Swanson-Hysell, N. L., Maloof, A. C., Weiss, B. P. & Evans, D. A. D. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat. Geosci. 2, 713–717 (2009)

    Article  CAS  ADS  Google Scholar 

  22. Li, Z. X., Evans, D. A. D. & Zhang, S. A 90 degrees spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth Planet. Sci. Lett. 220, 409–421 (2004)

    Article  CAS  ADS  Google Scholar 

  23. Macdonald, F. A. et al. Calibrating the Cryogenian. Science 327, 1241–1243 (2010)

    Article  CAS  ADS  Google Scholar 

  24. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys.. 46, (2008)

  25. Pavoni, N. Present true polar wander in the frame of the Geotectonic reference system. Swiss J. Geosci. 101, 629–636 (2008)

    Article  Google Scholar 

  26. McCausland, P. J. A., Hankard, F., Van der Voo, R. & Hall, C. M. Ediacaran paleogeography of Laurentia: paleomagnetism and 40Ar-39Ar geochronology of the 583 Ma Baie des Moutons syenite, Quebec. Precambr. Res. 187, 58–78 (2011)

    Article  CAS  ADS  Google Scholar 

  27. Sengör, A. M. C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279, 590–593 (1979)

    Article  ADS  Google Scholar 

  28. Collins, W. J. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet. Sci. Lett. 205, 225–237 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Evans, D. A. D. Proposal with a ring of diamonds. Nature 466, 326–327 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Li, Z. X. & Zhong, S. Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009)

    Article  ADS  Google Scholar 

  31. Deschamps, F., Kaminski, E. & Tackley, P. J. A deep mantle origin for the primitive signature of ocean island basalt. Nature Geosci. 4, 879–882 (2011)

    Article  CAS  ADS  Google Scholar 

  32. Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009)

    Article  CAS  ADS  Google Scholar 

  33. Garnero, E. J., Lay, T. & McNamara, A. K. Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes. Geol. Soc. Am. Spec. Pap. 430, 79–101 (2007)

    Google Scholar 

  34. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst.. 3, (2002)

  35. Evans, D. A. D. The paleomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol. Soc. Lond. Spec. Publ. 327, 371–404 (2009)

    Article  ADS  Google Scholar 

  36. Cogne, J. P. PaleoMac; a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochem. Geophys. Geosyst. 4, 1007 (2003)

    Article  ADS  Google Scholar 

  37. Mardia, K. V. & Gadsden, R. J. A small circle of best fit for spherical data and areas of vulcanism. J. R. Statist. Soc. C 26, 238–245 (1977)

    Google Scholar 

  38. Kirschvink, J. L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718 (1980)

    Article  ADS  Google Scholar 

  39. McFadden, P. L. A new fold test for palaeomagnetic studies. Geophys. J. Int. 103, 163–169 (1990)

    Article  ADS  Google Scholar 

  40. Torsvik, T. & Van der Voo, R. Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 151, 771–794 (2002)

    Article  ADS  Google Scholar 

  41. Li, Z. X. & Evans, D. A. D. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology 39, 39–42 (2011)

    Article  ADS  Google Scholar 

Download references


We are grateful for discussions with J. Besse, W. Bleeker, M. Brandon, I. Rose and L. Tauxe, editorial suggestions from P. Hoffman and B. Skinner, and reviews from B. Steinberger and R. Van der Voo. R.N.M. was funded by an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations



R.N.M. developed the conceptual idea for the study, D.A.D.E. assembled input data and developed statistical methods, and T.M.K. executed calculations and generated reconstructions and animations. All authors contributed to discussions and the writing of the manuscript.

Corresponding author

Correspondence to Ross N. Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and legend, Supplementary Tables 1-6 and Supplementary References. (PDF 681 kb)

Supplementary Movie 1

This movie corresponds to the orthoversion model, wherein the minimum moment of inertia (Imin) shifts 90° between supercontinents. (MOV 17831 kb)

Supplementary Movie 2

This movie corresponds to the alternative hypothesis of a fixed Imin through Phanerozoic time. (MOV 13567 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitchell, R., Kilian, T. & Evans, D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–211 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing