Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide structure and organization of eukaryotic pre-initiation complexes

An Erratum to this article was published on 04 July 2012

This article has been updated

Abstract

Transcription and regulation of genes originate from transcription pre-initiation complexes (PICs). Their structural and positional organization across eukaryotic genomes is unknown. Here we applied lambda exonuclease to chromatin immunoprecipitates (termed ChIP-exo) to examine the precise location of 6,045 PICs in Saccharomyces. PICs, including RNA polymerase II and protein complexes TFIIA, TFIIB, TFIID (or TBP), TFIIE, TFIIF, TFIIH and TFIIK were positioned within promoters and excluded from coding regions. Exonuclease patterns were in agreement with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged downstream +1 nucleosomes. At TATA-box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may allow greater latitude in start-site selection. Our genomic localization of messenger RNA and non-coding RNA PICs reveals that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona fide genes from transcriptional noise.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide structural organization of PICs.
Figure 2: Identification of TATA-like elements at TATA-less genes.
Figure 3: PIC organization in relation to TFIID and the +1 nucleosome.
Figure 4: Genomic view of PICs in relation to genes.
Figure 5: Distribution of ncRNA PICs.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Data deposits

Sequencing data have been deposited at theNCBI Sequence Read Archive under accession number SRA046523.

Change history

  • 20 February 2012

    Supplementary Data file 1 contained some errors and was replaced.

References

  1. Green, M. R. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25, 59–63 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989)

    Article  CAS  PubMed  Google Scholar 

  3. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Huisinga, K. L. & Pugh, B. F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Lee, T. I. et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405, 701–704 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sugihara, F., Kasahara, K. & Kokubo, T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 39, 59–75 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Mohibullah, N. & Hahn, S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev. 22, 2994–3006 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dudley, A. M., Rougeulle, C. & Winston, F. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13, 2940–2945 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhaumik, S. R. & Green, M. R. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol. Cell. Biol. 22, 7365–7371 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kostrewa, D. et al. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II–TFIIB complex and the transcription initiation mechanism. Science 327, 206–209 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Li, Y., Flanagan, P. M., Tschochner, H. & Kornberg, R. D. RNA polymerase II initiation factor interactions and transcription start site selection. Science 263, 805–807 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Pardee, T. S., Bangur, C. S. & Ponticelli, A. S. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem. 273, 17859–17864 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Yan, Q., Moreland, R. J., Conaway, J. W. & Conaway, R. C. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 35668–35675 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Kim, T. K., Ebright, R. H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1421 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Keogh, M. C., Cho, E. J., Podolny, V. & Buratowski, S. Kin28 is found within TFIIH and a Kin28–Ccl1–Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol. Cell. Biol. 22, 1288–1297 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Svejstrup, J. Q., Feaver, W. J. & Kornberg, R. D. Subunits of yeast RNA polymerase II transcription factor TFIIH encoded by the CCL1 gene. J. Biol. Chem. 271, 643–645 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein–DNA interactions detected at single nucleotide resolution. Cell 147, 1408–1419 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giardina, C. & Lis, J. T. DNA melting on yeast RNA polymerase II promoters. Science 261, 759–762 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Giardina, C. & Lis, J. T. Dynamic protein–DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15, 2737–2744 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forget, D., Langelier, M. F., Therien, C., Trinh, V. & Coulombe, B. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol. Cell. Biol. 24, 1122–1131 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagrange, T. et al. High-resolution mapping of nucleoprotein complexes by site-specific protein–DNA photocrosslinking: organization of the human TBP–TFIIA–TFIIB–DNA quaternary complex. Proc. Natl Acad. Sci. USA 93, 10620–10625 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Pal, M., Ponticelli, A. S. & Luse, D. S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell 19, 101–110 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Kuehner, J. N. & Brow, D. A. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J. Biol. Chem. 281, 14119–14128 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Matangkasombut, O., Buratowski, R. M., Swilling, N. W. & Buratowski, S. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14, 951–962 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koerber, R. T., Rhee, H. S., Jiang, C. & Pugh, B. F. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35, 889–902 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Faitar, S. L., Brodie, S. A. & Ponticelli, A. S. Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol. Cell. Biol. 21, 4427–4440 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nature Struct. Mol. Biol. 17, 1272–1278 (2010)

    Article  CAS  Google Scholar 

  35. Ahn, S. H., Keogh, M. C. & Buratowski, S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J. 28, 205–212 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nature Struct. Mol. Biol. 11, 394–403 (2004)

    Article  CAS  Google Scholar 

  37. Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Flom, G., Weekes, J. & Johnson, J. L. Novel interaction of the Hsp90 chaperone machine with Ssl2, an essential DNA helicase in Saccharomyces cerevisiae. Curr. Genet. 47, 368–380 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232–2235 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Rev. Genet. 10, 833–844 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. Wei, W., Pelechano, V., Jarvelin, A. I. & Steinmetz, L. M. Functional consequences of bidirectional promoters. Trends Genet. 27, 267–276 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Granovskaia, M. V. et al. High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol. 11, R24 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. Gerstein, M. B. et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Albert, I., Wachi, S., Jiang, C. & Pugh, B. F. GeneTrack—a genomic data processing and visualization framework. Bioinformatics 24, 1305–1306 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl Acad. Sci. USA 103, 5320–5325 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998)

    Article  CAS  PubMed  Google Scholar 

  49. Ansari, A. & Hampsey, M. A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev. 19, 2969–2978 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh, B. N. & Hampsey, M. A transcription-independent role for TFIIB in gene looping. Mol. Cell 27, 806–816 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Albert and Y. Li for bioinformatic support, and members of the Pugh laboratory and the Penn State Center for Eukaryotic Gene Regulation for valuable discussions. Sequencing was performed at the Penn State Genomics Core Facility. This work was supported by National Institutes of Health grant GM059055.

Author information

Authors and Affiliations

Authors

Contributions

H.S.R. performed the experiments and conducted data analyses. H.S.R. and B.F.P. conceived the experiments, analyses, and co-wrote the manuscript.

Corresponding author

Correspondence to B. Franklin Pugh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends and additional references. (PDF 4841 kb)

Supplementary Data 1-3

This zipped file contains Supplementary Data sets 1-3 as follows: (1) a list of the top 6,045 PICs, their associated gene, type of RNA produced, TSS and TATA location, occupancy levels of individual GTFs, and TATA and TAF classification; (2) underlying numerical values associated with Fig. 3a, GTF occupancy around the nearest nucleosome. Text file conversion can be visualized with Treeview software; (3) underlying numerical values associated with Fig. 4a, GTF occupancy around transcript and ORF start sites sorted by gene length. Text file conversion can be visualized with Treeview software. Supplementary Data file 1 contained some errors and was replaced on 20 February 2012. (ZIP 13219 kb)

Supplementary Data 4-7

This zipped file contains Supplementary Data 4-7 as follows: (4) underlying numerical values associated with Fig. 4b, GTF distribution around the 3’ ends of genes sorted by intergenic length. Text file conversion can be visualized with Treeview software; (5) underlying numerical values associated with Fig. 4c, GTF distribution around the TSS, and sorted by intergenic length. Text file conversion can be visualized with Treeview software (Excel, 36 MB); (6 ) underlying numerical values associated with Supplementary Fig. 8, GTF occupancy around individual +1 nucleosomes of ncRNA and orphan PICs. Text file conversion can be visualized with Treeview software (Excel, 5 MB); (7) underlying numerical values associated with Supplementary Fig. 9, GTFs occupancy around the TSS of SUTs and CUTs. Text file conversion can be visualized with Treeview software. (ZIP 18667 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, H., Pugh, B. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012). https://doi.org/10.1038/nature10799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10799

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research