Article | Published:

Experimental demonstration of topological error correction

Nature volume 482, pages 489494 (23 February 2012) | Download Citation

Abstract

Scalable quantum computing can be achieved only if quantum bits are manipulated in a fault-tolerant fashion. Topological error correction—a method that combines topological quantum computation with quantum error correction—has the highest known tolerable error rate for a local architecture. The technique makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the experimental demonstration of topological error correction with an eight-photon cluster state. We show that a correlation can be protected against a single error on any quantum bit. Also, when all quantum bits are simultaneously subjected to errors with equal probability, the effective error rate can be significantly reduced. Our work demonstrates the viability of topological error correction for fault-tolerant quantum information processing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in Proc. 35th Annu. Symp. Foundations Computer Sci. 124–134 (IEEE, 1994)

  2. 2.

    Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

  3. 3.

    Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

  4. 4.

    & Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

  5. 5.

    Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

  6. 6.

    Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

  7. 7.

    Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

  8. 8.

    , & Quantum accuracy threshold for concatenated distance-3 code. Quantum Inf. Comput. 6, 97–165 (2006)

  9. 9.

    Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191–1249 (1997)

  10. 10.

    & Latency in local, two-dimensional, fault-tolerant quantum computing. Quantum Inf. Comput. 9, 666–682 (2009)

  11. 11.

    , , & Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002)

  12. 12.

    , & A fault-tolerant one-way quantum computer. Ann. Phys. 321, 2242–2270 (2006)

  13. 13.

    , & Quantum computing with nearest neighbor interactions and error rates over 1%. Phys. Rev. A 83, 020302(R) (2011)

  14. 14.

    & Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007)

  15. 15.

    & Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010)

  16. 16.

    & A scalable, high-speed measurement-based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170501 (2009)

  17. 17.

    et al. Topological cluster state computation with photons. N. J. Phys. 11, 083032 (2009)

  18. 18.

    , , , & Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

  19. 19.

    Fractional Statistics and Anyon Superconductivity (World Scientific, 1990)

  20. 20.

    et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)

  21. 21.

    , , & Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001)

  22. 22.

    et al. Realization of quantum error correction. Nature 432, 602–605 (2004)

  23. 23.

    et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

  24. 24.

    et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008)

  25. 25.

    et al. Quantum error correction beyond qubits. Nature Phys. 5, 541–546 (2009)

  26. 26.

    & A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

  27. 27.

    & Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

  28. 28.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

  29. 29.

    & Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006)

  30. 30.

    Algebraic Topology (Cambridge Univ. Press, 2002)

  31. 31.

    & Topological cluster state quantum computing. Quantum Inf. Comput. 9, 727–738 (2009)

  32. 32.

    et al. Observation of eight-photon entanglement. Nature Photon. (in the press); preprint at 〈〉 (2011)

  33. 33.

    & Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002)

  34. 34.

    et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

  35. 35.

    Optical quantum computing. Science 318, 1567–1570 (2007)

  36. 36.

    , & How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008)

  37. 37.

    et al. Deterministic and storable single-photon source based on quantum memory. Phys. Rev. Lett. 97, 173004 (2006)

  38. 38.

    , & An avalanche-photodiode-based photon-number-resolving detector. Nature Phys. 2, 425–428 (2008)

  39. 39.

    et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

  40. 40.

    et al. Solid-state qubits with current-controlled coupling. Science 314, 1427–1429 (2006)

  41. 41.

    et al. T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)

  42. 42.

    et al. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

  43. 43.

    , & &. Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008)

Download references

Acknowledgements

We acknowledge discussions with M. A. Martin-Delgado and O. Gühne. We are grateful to X.-H. Bao for his original idea of the ultrabright entanglement and to C.-Z. Peng for his idea of reducing high-order emission. We would also like to thank C. Liu and S. Fölling for their help in designing the figures. This work has been supported by the NNSF of China, the CAS, the National Fundamental Research Program (under grant no. 2011CB921300) and NSERC.

Author information

Affiliations

  1. Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China

    • Xing-Can Yao
    • , Tian-Xiong Wang
    • , Hao-Ze Chen
    • , Wei-Bo Gao
    • , Zeng-Bing Chen
    • , Nai-Le Liu
    • , Chao-Yang Lu
    • , You-Jin Deng
    • , Yu-Ao Chen
    •  & Jian-Wei Pan
  2. CQC2T, School of Physics, University of Melbourne, Victoria 3010, Australia

    • Austin G. Fowler
  3. Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

    • Robert Raussendorf

Authors

  1. Search for Xing-Can Yao in:

  2. Search for Tian-Xiong Wang in:

  3. Search for Hao-Ze Chen in:

  4. Search for Wei-Bo Gao in:

  5. Search for Austin G. Fowler in:

  6. Search for Robert Raussendorf in:

  7. Search for Zeng-Bing Chen in:

  8. Search for Nai-Le Liu in:

  9. Search for Chao-Yang Lu in:

  10. Search for You-Jin Deng in:

  11. Search for Yu-Ao Chen in:

  12. Search for Jian-Wei Pan in:

Contributions

W.-B.G., A.G.F., R.R., Z.-B.C., Y.-J.D. and J.-W.P. had the idea for and initiated the experiment. A.G.F., R.R. and Y.-J.D. contributed to the general theoretical work. X.-C.Y., C.-Y.L., Y.-A.C. and J.-W.P. designed the experiment. X.-C.Y., T.-X.W. and H.-Z.C. carried out the experiment. X.-C.Y. and Y.-A.C. analysed the data. X.-C.Y., A.G.F., R.R., N.-L.L., C.-Y.L., Y.-J.D., Y.-A.C. and J.-W.P. wrote the manuscript. N.-L.L., Y.-A.C. and J.-W.P. supervised the whole project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Yu-Ao Chen or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text and Data, Supplementary Figures 1-2 with legends and additional references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature10770

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.