Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental demonstration of topological error correction


Scalable quantum computing can be achieved only if quantum bits are manipulated in a fault-tolerant fashion. Topological error correction—a method that combines topological quantum computation with quantum error correction—has the highest known tolerable error rate for a local architecture. The technique makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the experimental demonstration of topological error correction with an eight-photon cluster state. We show that a correlation can be protected against a single error on any quantum bit. Also, when all quantum bits are simultaneously subjected to errors with equal probability, the effective error rate can be significantly reduced. Our work demonstrates the viability of topological error correction for fault-tolerant quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological cluster states.
Figure 2: Cluster state | G 8 > and its cell complex.
Figure 3: Experimental set-up for the generation of the eight-photon cluster state and the demonstration of topological error correction.
Figure 4: Experimental results for the created eight-photon cluster state.
Figure 5: Experimental results of syndrome correlations for topological error correction.
Figure 6: Experimental results of topological error correction.

Similar content being viewed by others


  1. Shor, P. W. in Proc. 35th Annu. Symp. Foundations Computer Sci. 124–134 (IEEE, 1994)

    Book  Google Scholar 

  2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 code. Quantum Inf. Comput. 6, 97–165 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191–1249 (1997)

    Article  MathSciNet  Google Scholar 

  10. Spedalieri, F. & Roychowdhury, V. P. Latency in local, two-dimensional, fault-tolerant quantum computing. Quantum Inf. Comput. 9, 666–682 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Dennis, E., Landahl, A., Kitaev, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Raussendorf, R., Harrington, J. & Goyal, K. A fault-tolerant one-way quantum computer. Ann. Phys. 321, 2242–2270 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Wang, D. S., Austin, A. G. & Hollenberg, L. C. L. Quantum computing with nearest neighbor interactions and error rates over 1%. Phys. Rev. A 83, 020302(R) (2011)

    Article  ADS  Google Scholar 

  14. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007)

    Article  ADS  PubMed  Google Scholar 

  15. Barrett, S. D. & Stace, T. M. Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010)

    Article  ADS  PubMed  Google Scholar 

  16. Stock, R. & James, D. F. V. A scalable, high-speed measurement-based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170501 (2009)

    Article  ADS  PubMed  Google Scholar 

  17. Devitt, S. J. et al. Topological cluster state computation with photons. N. J. Phys. 11, 083032 (2009)

    Article  Google Scholar 

  18. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990)

    Book  Google Scholar 

  20. Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lu, C.-Y. et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoki, T. et al. Quantum error correction beyond qubits. Nature Phys. 5, 541–546 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Schlingemann, D. & Werner, R. F. Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  28. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hatcher, A. Algebraic Topology (Cambridge Univ. Press, 2002)

    MATH  Google Scholar 

  31. Fowler, A. G. & Goyal, K. Topological cluster state quantum computing. Quantum Inf. Comput. 9, 727–738 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Yao, X.-C. et al. Observation of eight-photon entanglement. Nature Photon. (in the press); preprint at 〈〉 (2011)

  33. Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002)

    Article  ADS  Google Scholar 

  34. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

    Article  ADS  PubMed  Google Scholar 

  35. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007)

    Article  ADS  PubMed  Google Scholar 

  36. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008)

    Article  ADS  PubMed  Google Scholar 

  37. Chen, S. et al. Deterministic and storable single-photon source based on quantum memory. Phys. Rev. Lett. 97, 173004 (2006)

    Article  ADS  PubMed  Google Scholar 

  38. Kardynał, B. E., Yuan, Z. L. & Shields, A. J. An avalanche-photodiode-based photon-number-resolving detector. Nature Phys. 2, 425–428 (2008)

    Google Scholar 

  39. Press, D. et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Hime, T. et al. Solid-state qubits with current-controlled coupling. Science 314, 1427–1429 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Hensinger, W. K. et al. T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  42. Jaksch, D. et al. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

    Article  ADS  CAS  Google Scholar 

  43. Benhelm, J., Kirchmair, G. & Roos, C. F. &. Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008)

    Article  ADS  CAS  Google Scholar 

Download references


We acknowledge discussions with M. A. Martin-Delgado and O. Gühne. We are grateful to X.-H. Bao for his original idea of the ultrabright entanglement and to C.-Z. Peng for his idea of reducing high-order emission. We would also like to thank C. Liu and S. Fölling for their help in designing the figures. This work has been supported by the NNSF of China, the CAS, the National Fundamental Research Program (under grant no. 2011CB921300) and NSERC.

Author information

Authors and Affiliations



W.-B.G., A.G.F., R.R., Z.-B.C., Y.-J.D. and J.-W.P. had the idea for and initiated the experiment. A.G.F., R.R. and Y.-J.D. contributed to the general theoretical work. X.-C.Y., C.-Y.L., Y.-A.C. and J.-W.P. designed the experiment. X.-C.Y., T.-X.W. and H.-Z.C. carried out the experiment. X.-C.Y. and Y.-A.C. analysed the data. X.-C.Y., A.G.F., R.R., N.-L.L., C.-Y.L., Y.-J.D., Y.-A.C. and J.-W.P. wrote the manuscript. N.-L.L., Y.-A.C. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Yu-Ao Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-2 with legends and additional references. (PDF 176 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, XC., Wang, TX., Chen, HZ. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing