Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural and functional conservation of key domains in InsP3 and ryanodine receptors

Abstract

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca2+ channels1. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP3R gating is initiated by InsP3 binding to the InsP3-binding core (IBC, residues 224–604 of InsP3R1)2 and it requires the suppressor domain (SD, residues 1–223 of InsP3R1)2,3,4,5,6,7,8. Here we present structures of the amino-terminal region (NT, residues 1–604) of rat InsP3R1 with (3.6 Å) and without (3.0 Å) InsP3 bound. The arrangement of the three NT domains, SD, IBC-β and IBC-α, identifies two discrete interfaces (α and β) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP3R10 and of the ABC domains docked into RyR9 are remarkably similar. The importance of the α-interface for activation of InsP3R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations9,11,12. Binding of InsP3 causes partial closure of the clam-like IBC, disrupting the β-interface and pulling the SD towards the IBC. This reorients an exposed SD loop (‘hotspot’ (HS) loop) that is essential for InsP3R activation7. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease9,11,12. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP3R, and an InsP3R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP3 and blocked by ryanodine. Activation mechanisms are conserved between InsP3R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-β or B domain), to gate the pore.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the NT region of InsP 3 R1 without InsP 3 bound.
Figure 2: InsP 3 -evoked conformational changes.
Figure 3: Docking of the apo -NT(Cys-less) structure into the cryo-electron microscopy map of InsP 3 R1.
Figure 4: Functional chimaeras of InsP 3 R and RyR.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates for NT(Cys-less) of rat InsP3R1 with and without InsP3 bound have been deposited in the Protein Data Bank under accession numbers 3UJ4 and 3UJ0, respectively.

References

  1. Serysheva, I., ed. Structure and Function of Calcium Release Channels. (Academic Press, 2010)

    Google Scholar 

  2. Bosanac, I. et al. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420, 696–700 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bosanac, I. et al. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol. Cell 17, 193–203 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Rossi, A. M. et al. Synthetic partial agonists reveal key steps in IP3 receptor activation. Nature Chem. Biol. 5, 631–639 (2009)

    Article  CAS  Google Scholar 

  5. Uchida, K., Miyauchi, H., Furuichi, T., Michikawa, T. & Mikoshiba, K. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 278, 16551–16560 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Schug, Z. T. & Joseph, S. K. The role of the S4–S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J. Biol. Chem. 281, 24431–24440 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Chan, J. et al. Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J. Biol. Chem. 285, 36092–36099 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamazaki, H., Chan, J., Ikura, M., Michikawa, T. & Mikoshiba, K. Tyr-167/Trp-168 in type1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J. Biol. Chem. 285, 36081–36091 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tung, C. C., Lobo, P. A., Kimlicka, L. & Van Petegem, F. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468, 585–588 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ludtke, S. J. et al. Flexible architecture of IP3R1 by cryo-EM. Structure 19, 1192–1199 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amador, F. J. et al. Crystal structure of type I ryanodine receptor amino-terminal β-trefoil domain reveals a disease-associated mutation “hot spot” loop. Proc. Natl Acad. Sci. USA 106, 11040–11044 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lobo, P. A. & Van Petegem, F. Crystal structures of the N-terminal domains of cardiac and skeletal muscle ryanodine receptors: insights into disease mutations. Structure 17, 1505–1514 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, C. W. & Tovey, S. C. IP3 receptors: toward understanding their activation. Cold Spring Harb. Perspect. Biol. 2, a004010 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anyatonwu, G. & Joseph, S. K. Surface accessibility and conformational changes in the N-terminal domain of type I inositol trisphosphate receptors: studies using cysteine substitution mutagenesis. J. Biol. Chem. 284, 8093–8102 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tateishi, H. et al. Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovasc. Res. 81, 536–545 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Sureshan, K. M. et al. Activation of IP3 receptors by synthetic bisphosphate ligands. Chem. Commun. 14, 1204–1206 (2009)

    Article  Google Scholar 

  17. Chan, J. et al. Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J. Mol. Biol. 373, 1269–1280 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Mayer, M. L. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lin, C. C., Baek, K. & Lu, Z. Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nature Struct. Mol. Biol. 18, 1172–1174 (2011)

    Article  CAS  Google Scholar 

  20. Hamada, T., Bannister, M. L. & Ikemoto, N. Peptide probe study of the role of interaction between the cytoplasmic and transmembrane domains of the ryanodine receptor in the channel regulation mechanism. Biochemistry 46, 4272–4279 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Ramos-Franco, J., Galvan, D., Mignery, G. A. & Fill, M. Location of the permeation pathway in the recombinant type-1 inositol 1,4,5-trisphosphate receptor. J. Gen. Physiol. 114, 243–250 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samsó, M., Feng, W., Pessah, I. N. & Allen, P. D. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol. 7, e85 (2009)

    Article  PubMed  Google Scholar 

  23. Iwai, M., Michikawa, T., Bosanac, I., Ikura, M. & Mikoshiba, K. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 282, 12755–12764 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Chu, A., Diaz-Munoz, M., Hawkes, M. J., Brush, K. & Hamilton, S. L. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol. Pharmacol. 37, 735–741 (1990)

    CAS  PubMed  Google Scholar 

  25. Lai, F. A. & Meissner, G. The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. J. Bioenerg. Biomembr. 21, 227–246 (1989)

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. et al. Dynamic, inter-subunit interactions between the N-terminal and central mutation regions of cardiac ryanodine receptor. J. Cell Sci. 123, 1775–1784 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. George, C. H. et al. Ryanodine receptor regulation by intramolecular interactions between cytoplasmic and transmembrane domains. Mol. Biol. Cell 15, 2627–2638 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Otsu, K. et al. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 13472–13483 (1990)

    CAS  PubMed  Google Scholar 

  31. Tovey, S. C. et al. Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J. Biol. Chem. 285, 12979–12989 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kenakin, T. P. Pharmacologic Analysis of Drug–Receptor Interactions 3rd edn (Lippincott, Williams & Wilkins, 1997)

    Google Scholar 

  33. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  35. Zorzato, F. et al. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244–2256 (1990)

    CAS  PubMed  Google Scholar 

  36. Tovey, S. C., Sun, Y. & Taylor, C. W. Rapid functional assays of intracellular Ca2+ channels. Nature Protocols 1, 259–263 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Wriggers, W., Milligan, R. A. & McCammon, J. A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Allen and D. MacLennan for gifts of plasmids encoding RyR2 and RyR1, respectively. C.W.T. thanks T. Rahman and V. Konieczny for discussions. M.I. acknowledges K. Mikoshiba and T. Michikawa for long-standing support and discussions. This work was supported by grants from the Heart and Stroke Foundation of Ontario (T-7181) to M.I., National Institutes of Health Research (EY012347 and NS059969) to J.B.A., the Wellcome Trust (085295), the Biotechnology and Biological Sciences Research Council (BB/H009736) and the Medical Research Council (G0900049) to C.W.T. M.-D.S. is supported by postdoctoral fellowships from the Canadian Institutes of Health Research and the National Research Foundation of Korea (2009-352-E00006). A.M.R. is a fellow of Queens’ College, Cambridge. M.I. holds a Canadian Research Chair in Cancer Structural Biology.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions M.-D.S., N.I., P.B.S., M.I. and C.L. determined and analysed the structure of NT. S.V. prepared and characterized the full-length InsP3R and chimaeras. A.M.R., S.A.K. and P.D. completed analyses of InsP3 binding and related molecular biology. J.B.A., M.I. and C.W.T. supervised work in their respective laboratories, coordinated the project and, with input from other authors, wrote the paper.

Corresponding authors

Correspondence to Mitsuhiko Ikura or Colin W. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References, Supplementary Tables 1-9 and Supplementary Figures 1-11 with legends. (PDF 3054 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, MD., Velamakanni, S., Ishiyama, N. et al. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483, 108–112 (2012). https://doi.org/10.1038/nature10751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10751

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing