Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-cone-like spreading of correlations in a quantum many-body system


In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied1. The existence of a maximal velocity, known as the Lieb–Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice2,3,4,5)—such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a ‘speed of light’ has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium6, and for engineering the efficient quantum channels necessary for fast quantum computations7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spreading of correlations in a quenched atomic Mott insulator.
Figure 2: Time evolution of the two-point parity correlations.
Figure 3: Propagation velocity.


  1. Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Calabrese, P. & Cardy, J. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)

    Article  ADS  Google Scholar 

  4. Eisert, J. & Osborne, T. J. General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Nachtergaele, B., Ogata, Y. & Sims, R. Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011)

    Article  ADS  Google Scholar 

  7. Bose, S. Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Hastings, M. B. Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  9. Nachtergaele, B. & Sims, R. Much ado about something: why Lieb–Robinson bounds are useful. Preprint at (2011)

  10. Nachtergaele, B. & Sims, R. Lieb–Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hastings, M. B. & Koma, T. Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Eisert, J., Cramer, M. & Plenio, M. B. Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Läuchli, A. M. & Kollath, C. Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model. J. Stat. Mech. P05018 (2008)

  14. Nachtergaele, B., Raz, H., Schlein, B. & Sims, R. Lieb–Robinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286, 1073–1098 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cramer, M., Serafini, A. & Eisert, J. in Quantum Information and Many Body Quantum Systems Vol. 8 (eds Ericsson, M. & Montangero, S. ) 51–72 (Edizioni della Normale, Pisa, 2008)

    Google Scholar 

  16. Eisert, J. & Gross, D. Supersonic quantum communication. Phys. Rev. Lett. 102, 240501 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Sherson, J. F. et al. Single-atom resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  ADS  CAS  Google Scholar 

  21. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Kühner, T. D., White, S. R. & Monien, H. One-dimensional Bose–Hubbard model with nearest neighbor interaction. Phys. Rev. B 61, 12474–12489 (2000)

    Article  ADS  Google Scholar 

  23. Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. P04005 (2004)

  25. White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004)

    Article  ADS  Google Scholar 

  26. Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. One-dimensional density waves of ultracold bosons in an optical lattice. Phys. Rev. A 71, 053606 (2005)

    Article  ADS  Google Scholar 

  27. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. Math. Gen. 9, 1387–1398 (1976)

    Article  ADS  Google Scholar 

  28. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985)

    Article  ADS  CAS  Google Scholar 

  29. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Vidal, G. Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 070201 (2007)

    Article  ADS  CAS  Google Scholar 

Download references


We thank C. Weitenberg and J. F. Sherson for their contribution to the design and construction of the apparatus. We also thank D. Baeriswyl, T. Giamarchi, V. Gritsev and S. Huber for discussions. C.K. acknowledges previous collaboration on a related subject with A. Läuchli. We acknowledge funding by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.), JSPS (Postdoctoral Fellowship for Research Abroad to T.F.), ‘Triangle de la physique’, ANR (FAMOUS) and SNSF (under division II and MaNEP). Financial support for the computer cluster on which the calculations were performed was provided by the Fondation Ernst et Lucie Schmidheiny.

Author information

Authors and Affiliations



M.C. performed the experiment. P.B. performed the numerical simulations. P.B., D.P. and C.K. developed the analytical model. M.C. and P.B. carried out the data analysis. All authors contributed to designing the study, to interpreting the data and to writing the manuscript.

Corresponding author

Correspondence to Marc Cheneau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data including a Supplementary Discussion, Supplementary Figures 1-2 with legends, Supplementary Tables 1-2 and additional references. (PDF 319 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheneau, M., Barmettler, P., Poletti, D. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing