Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kimberlite ascent by assimilation-fuelled buoyancy

Abstract

Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons1,2,3. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond)4,5. Kimberlite magmas also reputedly have higher ascent rates6,7,8,9 than other xenolith-bearing magmas10,11. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified6,9. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmitted-light optical microscope images of thin sections of kimberlite, peridotite and orthopyroxene.
Figure 2: CO2 solubilities in silicic to carbonate melts (after ref. 19).
Figure 3: High-temperature analogue experiments.
Figure 4: Model for assimilation-fuelled ascent of kimberlite.

Similar content being viewed by others

References

  1. Mitchell, R. H. Kimberlites: Mineralogy, Geochemistry and Petrology (Plenum, 1986)

    Book  Google Scholar 

  2. Nixon, P. H. The morphology and nature of primary diamondiferous occurrences. J. Geochem. Explor. 53, 41–71 (1995)

    Article  CAS  Google Scholar 

  3. Kjarsgaard, B. A. in Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, The Evolution Of Geological Provinces, and Exploration Methods (ed. Goodfellow, W. D. ) 245–271 (Geological Association of Canada, Mineral Deposits Division, 2007)

    Google Scholar 

  4. Boyd, F. R. & Nixon, P. H. in Lesotho Kimberlites (ed. Nixon, P. H. ) 254–268 (Lesotho National Development Corporation, Maseru, 1973)

    Google Scholar 

  5. Mitchell, R. H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 174, 1–8 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Anderson, O. L. in Kimberlites, Diatremes and Diamonds: Their Geology, Petrology and Geochemistry (eds Meyer, H. O. A. & Boyd, F. R. ) 344–353 (AGU, 1979)

    Book  Google Scholar 

  7. Canil, D. & Fedortchouk, Y. Garnet dissolution and the emplacement of kimberlites. Earth Planet. Sci. Lett. 167, 227–237 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Sparks, R. S. J. et al. Dynamical constraints on kimberlite volcanism. J. Volcanol. Geotherm. Res. 155, 18 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Wilson, L. & Head, J. W. An integrated model of kimberlite ascent and eruption. Nature 447, 53–57 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Sparks, R. S. J., Pinkerton, H. & Macdonald, R. The transport of xenoliths in magmas. Earth Planet. Sci. Lett. 35, 234–238 (1977)

    Article  ADS  Google Scholar 

  11. Spera, F. K. Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib. Mineral. Petrol. 88, 217–232 (1984)

    Article  ADS  CAS  Google Scholar 

  12. Sparks, R. S. J. et al. The nature of erupting kimberlite melts. Lithos 112, 429–438 (2009)

    Article  ADS  Google Scholar 

  13. Price, S. E., Russell, J. K. & Kopylova, M. G. Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. J. Petrol. 41, 789–808 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Kopylova, M. G. & Russell, J. K. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet. Sci. Lett. 181, 71–87 (2000)

    Article  ADS  CAS  Google Scholar 

  16. McDonough, W. F. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 101, 1–18 (1990)

    Article  ADS  CAS  Google Scholar 

  17. Mitchell, R. H. Composition of olivine, silica activity and oxygen fugacity in kimberlite. Lithos 6, 65–81 (1973)

    Article  ADS  CAS  Google Scholar 

  18. Brett, R. C., Russell, J. K. & Moss, S. Origin of olivine in kimberlite: phenocryst or imposter? Lithos 112, 201–212 (2009)

    Article  ADS  Google Scholar 

  19. Brooker, R. A., Sparks, R. S. J., Kavanagh, J. & Field, M. The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. Bull. Volcanol. 73, 959–981 (2011)

    Article  ADS  Google Scholar 

  20. Sparks, R. S. J., Brown, R. J., Field, M. & Gilbertson, M. A. Kimberlite ascent and eruption. Nature 450, E21 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Dalton, J. A. & Presnall, D. C. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J. Petrol. 39, 1953–1964 (1998)

    ADS  CAS  Google Scholar 

  22. Dobson, D. P. et al. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207–215 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Keppler, H. Water solubility in carbonatite melt. Am. Mineral. 88, 1822–1824 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Lensky, N. G., Niebo, R. W., Holloway, J. R., Lyakhovsky, V. & Navon, O. Bubble nucleation as a trigger for xenolith entrapment in mantle melts. Earth Planet. Sci. Lett. 245, 278–288 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Luth, R. W. The activity of silica in kimberlites: revisited. Contrib. Mineral. Petrol. 158, 283–294 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Shaw, C. S. J. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib. Mineral. Petrol. 135, 114–132 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Edwards, B. R. & Russell, J. K. Time scales of magmatic processes: new insights from dynamic models for magmatic assimilation. Geology 26, 1103–1106 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Wyllie, P. J. & Huang, W. L. Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2 . Geology 3, 621–624 (1975)

    Article  ADS  CAS  Google Scholar 

  29. Canil, D. & Bellis, A. J. Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105, 111–117 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Patterson, M., Francis, D. & McCandless, T. Kimberlites: magmas of mixtures? Lithos 112, 191–200 (2009)

    Article  ADS  Google Scholar 

  31. Kavanagh, J. & Sparks, R. S. J. Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286, 404–413 (2009)

    Article  ADS  CAS  Google Scholar 

  32. Dawson, J. B. Quaternary kimberlitic volcanism on the Tanzania Craton. Contrib. Mineral. Petrol. 116, 473–485 (1994)

    Article  ADS  CAS  Google Scholar 

  33. Ferguson, J., Danchin, R. V. & Nixon, P. H. in Lesotho Kimberlites (ed. Nixon, P. H. ) 207–213 (Lesotho National Development Corporation, Maseru, Lesotho, 1973)

    Google Scholar 

  34. Hrma, P. Reaction between sodium carbonate and silica sand at 874°C < T 1022°C. J. Am. Ceram. Soc. 68, 337–341 (1985)

    Article  CAS  Google Scholar 

  35. Kopylova, M. G., Russell, J. K. & Cookenboo, H. Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J. Petrol. 40, 79–104 (1999)

    Article  ADS  CAS  Google Scholar 

  36. Dalton, J. A. & Presnall, D. C. Carbonatitic melts along solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib. Mineral. Petrol. 131, 123–135 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the laboratory support of W. Ertel-Ingritsch and S. Laumann at Ludwig Maximilian University. Funding for this research is from the Natural Sciences and Engineering Research Council (J.K.R.), a Marie Curie outbound fellowship (L.A.P.) and an ERC Advanced Researcher Grant (D.B.D.). The original manuscript benefitted from review by S. Sparks.

Author information

Authors and Affiliations

Authors

Contributions

J.K.R. conceptualized the original idea, performed the static experiments at the University of Munich, and wrote the original draft paper. L.A.P. provided kimberlite expertise and context and drafted the figures. Y.L. performed the transient experiments and processed the experimental data. D.B.D. hosted, provided and repaired the experimental facility, and advised on the optimal experimental methods. All co-authors contributed to producing a final draft for review and in revising the manuscript after review.

Corresponding author

Correspondence to James K. Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2. (PDF 122 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, J., Porritt, L., Lavallée, Y. et al. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481, 352–356 (2012). https://doi.org/10.1038/nature10740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10740

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing