Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear material behaviour of spider silk yields robust webs


Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre1,2,3,4,5. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence6 to the geometry of a web7. This material system8, highly adapted to meet a spider’s many needs, has superior mechanical properties9,10,11,12,13,14,15. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres1,6,10,13,16,17, and into the mechanical characteristics of web-like structures18,19,20,21, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress—involving softening at a yield point and substantial stiffening at large strain until failure—as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic–plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web’s structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Material behaviour of dragline spider silk, web model, and behaviour of webs under load.
Figure 2: Web response for varied silk behaviour under targeted (local) and distributed (global) loading.
Figure 3: Effects of stress–strain behaviour on structural robustness via quantized fracture mechanics.


  1. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999)

    CAS  Google Scholar 

  2. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Aizenberg, J. et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005)

    Article  CAS  ADS  Google Scholar 

  4. Vollrath, F. Spider webs and silks. Sci. Am. 266, 70–76 (1992)

    Article  CAS  Google Scholar 

  5. Kamat, S., Su, X., Ballarini, R. & Heuer, A. H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas . Nature 405, 1036–1040 (2000)

    Article  CAS  ADS  Google Scholar 

  6. Lefèvre, T., Rousseau, M. E. & Pézolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92, 2885–2895 (2007)

    Article  ADS  Google Scholar 

  7. Vollrath, F. & Mohren, W. Spiral geometry in the garden spider’s orb web. Naturwissenschaften 72, 666–667 (1985)

    Article  ADS  Google Scholar 

  8. Vollrath, F. Silk evolution untangled. Nature 466, 319 (2010)

    Article  CAS  ADS  Google Scholar 

  9. Agnarsson, I., Kuntner, M. & Blackledge, T. A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS ONE 5, e11234 (2010)

    Article  ADS  Google Scholar 

  10. Du, N. et al. Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91, 4528–4535 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Shao, Z. Z. & Vollrath, F. Materials: surprising strength of silkworm silk. Nature 418, 741 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010)

    Article  CAS  ADS  Google Scholar 

  13. Ko, K. K. et al. Engineering properties of spider silk. Adv. Fibers Plastics Laminates Composites. 702, 17–23 (2002)

    CAS  Google Scholar 

  14. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008)

    Article  CAS  ADS  Google Scholar 

  15. Vollrath, F., Holtet, T., Thogersen, H. C. & Frische, S. Structural organization of spider silk. Proc. R. Soc. Lond. B 263, 147–151 (1996)

    Article  ADS  Google Scholar 

  16. Keten, S., Xu, Z. P., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Mater. 9, 359–367 (2010)

    Article  CAS  ADS  Google Scholar 

  17. Keten, S. & Buehler, M. J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interf. 7, 1709–1721 (2010)

    Article  CAS  Google Scholar 

  18. Aoyanagi, Y. & Okumura, K. Simple model for the mechanics of spider webs. Phys. Rev. Lett. 104, 038102 (2010)

    Article  ADS  Google Scholar 

  19. Ko, F. K. & Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5, 780–785 (2004)

    Article  CAS  Google Scholar 

  20. Alam, M. S., Wahab, M. A. & Jenkins, C. H. Mechanics in naturally compliant structures. Mech. Mater. 39, 145–160 (2007)

    Article  Google Scholar 

  21. Alam, M. S. & Jenkins, C. H. Damage tolerance in naturally compliant structures. Int. J. Damage Mech. 14, 365–384 (2005)

    Article  Google Scholar 

  22. Foelix, R. F. Biology of Spiders 2nd edn (Oxford University Press/Georg Thieme, 1996)

    Google Scholar 

  23. Vollrath, F. Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999)

    Article  CAS  Google Scholar 

  24. Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994)

    Article  CAS  ADS  Google Scholar 

  25. Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007)

    Article  CAS  Google Scholar 

  26. Swanson, B. O., Blackledge, T. A. & Hayash, C. Y. Spider capture silk: performance implications of variation in an exceptional biomaterial. J. Exp. Zool. A 307A, 654–666 (2007)

    Article  CAS  Google Scholar 

  27. Swanson, B. O., Anderson, S. P., DiGiovine, C., Ross, R. N. & Dorsey, J. P. The evolution of complex biomaterial performance: the case of spider silk. Integr. Comp. Biol. 49, 21–31 (2009)

    Article  CAS  Google Scholar 

  28. Vollrath, F. & Selden, P. The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819–846 (2007)

    Article  Google Scholar 

  29. Keten, S. & Buehler, M. J. Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010)

    Article  ADS  Google Scholar 

  30. Pugno, N. M. & Ruoff, R. S. Quantized fracture mechanics. Phil. Mag. 84, 2829–2845 (2004)

    Article  CAS  ADS  Google Scholar 

  31. Buehler, M. J. & Gao, H. Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006)

    Article  CAS  ADS  Google Scholar 

  32. Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10, 2626–2634 (2010)

    Article  CAS  ADS  Google Scholar 

  33. van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002)

    Article  CAS  ADS  Google Scholar 

Download references


This work was supported primarily by the Office of Naval Research (N000141010562) with additional support from the National Science Foundation (MRSEC DMR-0819762, the NSF-REU programme, as well as CMMI-0642545) and the Army Research Office (W911NF-09-1-0541 and W911NF-10-1-0127). Support from the MIT-Italy programme (MITOR) and a Robert A. Brown Presidential Fellowship is gratefully acknowledged. N.M.P. is supported by the METREGEN grant (2009-2012) “Metrology on a cellular and macromolecular scale for regenerative medicine”. An Ideas Starting Grant 2011 BIHSNAM on “Bio-inspired hierarchical super nanomaterials” was awarded to N.M.P. from the European Research Council, under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant (agreement number 279985). All simulations have been carried out at MIT’s Laboratory for Atomistic and Molecular Mechanics (LAMM). We acknowledge assistance from S. and E. Buehler in taking photographs of the spider web.

Author information

Authors and Affiliations



S.W.C. and M.J.B. designed the research and analysed the results. S.W.C. and A.T. developed the material models, performed the simulations, and conducted the simulation data analysis. M.J.B. performed the in situ experiments and analysed the results. N.M.P. contributed the theoretical analysis and predictions and analysed the results. S.W.C., M.J.B., A.T. and N.M.P. wrote the paper.

Corresponding author

Correspondence to Markus J. Buehler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-11, Supplementary Figures 1-12 with legends, Supplementary Tables 1-5 and additional references. (PDF 1128 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cranford, S., Tarakanova, A., Pugno, N. et al. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing