Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Amazon basin in transition

A Corrigendum to this article was published on 07 March 2012

Abstract

Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Interactions between global climate, land use, fire, hydrology, ecology and human dimensions.
Figure 2: Climatic gradient across the Amazon basin.
Figure 3: Decadal and seasonal variation in flood area.
Figure 4: The Amazon basin today and future fire risks.
Figure 5: Estimates of Amazonian greenhouse-gas emissions.

References

  1. Instituto. Nacional de Pesquisas Espaciais & National Institute for Space Research Projeto Prodes Monitoramento da Florsta Amazonica Brasileira por Satélite Prodeshttp://www.obt.inpe.br/prodes/〉 (2011)

  2. Salati, E. & Vose, R. Amazon basin: a system in equilibrium. Science 225, 129–138 (1984)One of the first presentations of the Amazon basin from a systems perspective.

    ADS  CAS  PubMed  Google Scholar 

  3. Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Change Biol. 12, 1107–1138 (2006)

    ADS  Google Scholar 

  4. Saatchi, S. S., Houghton, R. A., Dos Santos Alvara, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Change Biol. 13, 816–837 (2007)Estimates of regional variation and patterns in forest biomass are presented based on a remote sensing approach.

    ADS  Google Scholar 

  5. Marengo, J. A. Interdecadal variability and trends of rainfall across the Amazon basin. Theor. Appl. Climatol. 78, 79–96 (2004)

    ADS  Google Scholar 

  6. Coe, M. T., Costa, M. H., Botta, A. & Birkett, C. Long-term simulations of discharge and floods in the Amazon basin. J. Geophys. Res. 107, 8044, http://dx.doi.org/10.1029/2001JD000740 (2002)

  7. Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010)

    ADS  CAS  Google Scholar 

  8. Marengo, J. A., Nobre, C. A., Tomasella, J., Cardosa, M. F. & Oyama, M. D. Hydro-climate and ecological behaviour of the drought of Amazonia in 2005. Phil. Trans. R. Soc. B 363, 1773–1778 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marengo, J. in Tropical Rainforest Responses to Climatic Change (eds Bush, M. B. & Flenley, J. R.) 236–268 (Springer Praxis Books, 2007)

    Google Scholar 

  10. Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994)First demonstration of the importance of deep rooting for survival of eastern Amazonian trees.

    ADS  CAS  Google Scholar 

  11. Oliveira, R. S. et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct. Ecol. 19, 574–581 (2005)

    Google Scholar 

  12. Saleska, S. R. et al. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302, 1554–1557 (2003)

    ADS  CAS  PubMed  Google Scholar 

  13. da Rocha, H. R. et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 114, G00B12, http://dx.doi.org/10.1029/2007JG000640 (2009)

  14. Brando, P., Goetz, S., Baccini, A., Nepstad, D. & Beck, P. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl Acad. Sci. USA 107, 14685–14690 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huete, A. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405, http://dx.doi.org/10.1029/02005GL025583 (2006)

  16. Brando, P. M. et al. Drought effects on litterfall, wood production, and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Phil. Trans. R. Soc. B 363, 1839–1848 (2008)

    PubMed  PubMed Central  Google Scholar 

  17. da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010)

    PubMed  Google Scholar 

  18. Fisher, R. A., Williams, M., Lobo do Vale, R., Costa, A. & Meir, P. Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ. 29, 151–165 (2006)

    PubMed  Google Scholar 

  19. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009)

    ADS  CAS  PubMed  Google Scholar 

  20. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. C. The 2010 Amazon drought. Science 331, 554 (2011)

    ADS  CAS  PubMed  Google Scholar 

  21. Xu, L. et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 38, L07402, http://dx.doi.org/10.1029/2011GL046824 (2011)

  22. Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007)

    PubMed  Google Scholar 

  23. Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010)

    PubMed  Google Scholar 

  24. Soares-Filho, B. S. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006)Landmark presentation of scenarios of development and conservation policies in a spatially explicit simulation model.

    ADS  CAS  PubMed  Google Scholar 

  25. Arima, E. Y., Walker, R. T., Perz, S. G. & Caldas, M. M. Loggers and forest fragmentation: behavioral models of road building in the Amazon basin. Ann. Assoc. Am. Geogr. 95, 525–541 (2005)

    Google Scholar 

  26. Brondízio, E. S. et al. in Amazonia and Global Change (eds Keller, M., Bustamante, M., Gash, J. & Dias, P. S.) 117–143 (American Geophysical Union, 2009)

  27. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005)

    ADS  CAS  PubMed  Google Scholar 

  29. Asner, G. P. et al. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 12947–12950 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nepstad, D. C. et al. Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Mgmt 154, 395–407 (2001)

    Google Scholar 

  31. Miller, S. D. et al. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1105068108 108, 19431–19435 (2011)

    ADS  CAS  Google Scholar 

  32. Soares-Filho, B. S. et al. Role of the Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costa, M. H. & Foley, J. A. Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res. 104, 14189–14198 (1999)

    ADS  Google Scholar 

  34. Hölscher, D., Sá, T. D. A., Bastos, T. X., Denich, M. & Fölster, H. Evaporation from young secondary vegetation in eastern Amazonia. J. Hydrol. 193, 293–305 (1997)

    ADS  Google Scholar 

  35. Vieira, I. C. G. et al. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens. Environ. 87, 470–481 (2003)

    ADS  Google Scholar 

  36. Avissar, R. & Schmidt, T. An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using a large-eddy simulation model. J. Atmos. Sci. 55, 2666–2689 (1998)

    ADS  Google Scholar 

  37. Butt, N., Oliveira, P. A. & Costa, M. H. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res. 116, D11120, http://dx.doi.org/10.1029/2010JD015174 (2011)

  38. Knox, R., Bisht, G., Wang, J. & Bras, R. L. Precipitation variability over the forest to non-forest transition in southwestern Amazonia. J. Clim. 24, 2368–2377 (2011)

    ADS  Google Scholar 

  39. Coe, M. T., Costa, M. H. & Soares-Filho, B. S. The Influence of historical and potential future deforestation on the stream flow of the Amazon River — land surface processes and atmospheric feedbacks. J. Hydrol. 369, 165–174 (2009)

    ADS  Google Scholar 

  40. Leite, N. K. et al. Intra and interannual variability in the Madeira River water chemistry and sediment load. Biogeochemistry 105, 37–51 (2011)

    CAS  Google Scholar 

  41. Costa, M. H., Botta, A. & Cardille, J. A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 283, 206–217 (2003)

    ADS  Google Scholar 

  42. Coe, M. T., Latrubesse, E. M., Ferreira, M. E. & Amsler, M. L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105, 119–131 (2011)

    Google Scholar 

  43. Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. 106, 20610–20615 (2009)A review of climate model predictions for the Amazon basin.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rammig, A. et al. Estimating the risk of Amazonian forest dieback. New Phytol. 187, 694–706 (2010)

    CAS  PubMed  Google Scholar 

  45. Nobre, C. A. & Simone Borma, L. Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sust. 1, 28–36 (2009)

    Google Scholar 

  46. Alencar, A., Solórzano, L. & Nepstad, D. Modeling forest understory fire in an eastern Amazonian landscape. Ecol. Appl. 14, S139–S149 (2004)

    Google Scholar 

  47. Artaxo, P. et al. Physical and chemical properties of aerosols in the wet and dry season in Rondônia, Amazonia. J. Geophys. Res. 107 (D20). 8081–8095 (2002)

    Google Scholar 

  48. Williams, E. et al. Contrasting convective regimes over the Amazon: implications for cloud electrification. J. Geophys. Res. 107 (D20). 8082–8093 (2002)

    Google Scholar 

  49. Andreae, M. O. et al. Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004)A review of understanding of how smoke from biomass burning affects local and regional climate.

    ADS  CAS  PubMed  Google Scholar 

  50. Bevan, S. L., North, P. R. J., Grey, W. M. F., Los, S. O. & Plummer, S. E. Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. J. Geophys. Res. 114, D09204, http://dx.doi.org/10.1029/2008JD011112 (2009)

  51. Longo, K. M. et al. Correlation between smoke and tropospheric ozone concentration in Cuiabá during SCAR-B. J. Geophys. Res. 104 (D10). 12113–12129 (1999)

    ADS  CAS  Google Scholar 

  52. Oliveira, P. H. F. et al. The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus B 59, 338–349 (2007)

    ADS  Google Scholar 

  53. Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of flammability in mature and disturbed forests in an east-central Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005)

    Google Scholar 

  54. Alencar, A., Nepstad, D. C. & Vera Diaz, M. d. C. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO Years: area burned and committed carbon emissions. Earth Interact. 10, 6,. 1–17 (2006)

    Google Scholar 

  55. Aragão, L. E. O. & Shimabukuro, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010)

    ADS  PubMed  Google Scholar 

  56. Barlow, J. & Peres, C. A. in Emerging Threats to Tropical Forests (eds Laurance, W. F. & Peres, C. A. ) 225–240 (Univ. Chicago Press, 2006)

    Google Scholar 

  57. Balch, J. K. et al. Size, species, and fire characteristics predict tree and liana mortality from experimental burns in the Brazilian Amazon. For. Ecol. Mgmt 261, 68–77 (2011)

    Google Scholar 

  58. Balch, J. D. et al. Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Change Biol. 14, 2276–2287 (2008)

    ADS  Google Scholar 

  59. Nepstad, D. C., Stickler, C. M., Soares-Filho, B. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Phil. Trans. R. Soc. B 363, 1737–1746 (2008)Explores the mechanisms of how land use, fire and climate change interact.

    PubMed  PubMed Central  Google Scholar 

  60. Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005)

    Google Scholar 

  61. Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007)Chronosequences of secondary forests were analysed to demonstrate that nitrogen limitation occurs in young Amazonian forests and then gradually declines during secondary succession.

    ADS  CAS  PubMed  Google Scholar 

  62. Melack, J. M. et al. Regionalization of methane emissions in the Amazon basin with microwave remote sensing. Glob. Change Biol. 10, 530–544 (2004)

    ADS  Google Scholar 

  63. Miller, J. B. et al. Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 34, L10809, http://dx.doi.org/10.1029/2006GL029213 (2007)

  64. do Carmo, J. B., Keller, M., Dias, J. D., de Camargo, P. B. & Crill, P. A source of methane from upland forests in the Brazilian Amazon. Geophys. Res. Lett. 33, 1–4 http://dx.doi.org/10.1029/2005GL025436 (2006)

  65. Davidson, E. A. & Artaxo, P. Globally significant changes in biological processes of the Amazon Basin: results of the Large-scale Biosphere-Atmosphere Experiment. Glob. Change Biol. 10, 519–529 (2004)

    ADS  Google Scholar 

  66. D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009)

    ADS  Google Scholar 

  67. ter Steege, H. N. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006)

    ADS  CAS  PubMed  Google Scholar 

  68. Telles, E. C. C. et al. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Glob. Biogeochem. Cycles 17, 1040, http://dx.doi.org/10.1029/2002GB001953 (2003)

    Google Scholar 

  69. Fisher, J. I., Hurtt, G. C., Thomas, R. Q. & Chambers, J. Q. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett. 11, 554–563 (2008)

    PubMed  Google Scholar 

  70. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003)

    ADS  CAS  PubMed  Google Scholar 

  71. Chambers, J. Q. et al. Lack of intermediate-scale disturbance data prevents robust extrapolation of plot-level tree mortality rates for old-growth tropical forests. Ecol. Lett. 12, E22–E25 (2009)

    Google Scholar 

  72. Gloor, M. et al. Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data? Glob. Change Biol. 15, 2418–2430 (2009)

    ADS  Google Scholar 

  73. Lloyd, J., Gloor, E. U. & Lewis, S. L. Are the dynamics of tropical forests dominated by large and rare disturbance events? Ecol. Lett. 12, E19–E21 (2009)

    PubMed  Google Scholar 

  74. Espírito-Santo, F. D. B. et al. Storm intensity and old growth forest disturbances in the Amazon region. Geophys. Res. Lett. 37, L11403, http://dx.doi.org/10.1029/2010GL043146 (2010)

    Google Scholar 

  75. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 . Nature 416, 617–620 (2002)Presents first calculations of potential loss of CO 2 to the atmosphere from the Amazon River and its main tributaries.

    ADS  CAS  PubMed  Google Scholar 

  76. Melack, J. M., Novo, E. M. L. M., Forsberg, B. R., Piedade, M. T. F. & Maurice, L. in Amazonia and Global Change (eds Keller, M. et al.) 525–542 (American Geophysical Union Books, 2009)

    Google Scholar 

  77. Davidson, E. A., Figueiredo, R. O., Markewitz, D. & Aufdenkampe, A. Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J. Geophys. Res. 115, G04005, http://dx.doi.org/10.1029/2009JG001202 (2010)

  78. Johnson, M. S. et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35, L17401, http://dx.doi.org/10.1029/2008GL034619 (2008)

  79. Gatti, L. V. et al. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus Bhttp://dx.doi.org/10.1111/j.1600-0889.2010.00484.x (published online, 6 July 2010)

  80. Houghton, R. A., Gloor, M., Lloyd, J. & Potter, C. in Amazonia and Global Change (eds Keller, M. et al.) 409–428 (American Geophysical Union Books, 2009)The net effect of carbon loss due to deforestation and carbon accumulation from forest regrowth is estimated.

    Google Scholar 

  81. Bustamante, M. M. C. et al. Estimating greenhouse gas emissions from cattle raising in Brazil. Clim. Change (submitted)

  82. Morton, D. C. et al. Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact. 9, 1–22 (2005)

    Google Scholar 

  83. Fearnside, P. M. et al. Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: the states of Mato Grosso and Rondonia. For. Ecol. Mgmt 258, 1968–1978 (2009)

    Google Scholar 

  84. Cerri, C. E. P. et al. Modelling changes in soil organic matter in Amazon forest to pasture conversion, using the Century model. Glob. Change Biol. 10, 815–832 (2004)

    ADS  Google Scholar 

  85. Asner, G. P., Townsend, A. R., Bustamante, M. M. C., Nardoto, G. B. & Olander, L. P. Pasture degradation in the Central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Glob. Change Biol. 10, 844–862 (2004)

    ADS  Google Scholar 

  86. Neill, C. & Davidson, E. A. in Global Climate Change and Tropical Ecosystems (eds Lal, R., Kimble, J. M. & Stewart, B. A. ) 197–211 (CRC Press, 2000)

    Google Scholar 

  87. Grace, J., San Jose, J., Meir, P., Miranda, H. S. & Montes, R. A. Productive and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006)

    Google Scholar 

  88. Santos, A. J. B. et al. High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian cerrado. Glob. Change Biol. 10, 877–885 (2004)

    ADS  Google Scholar 

  89. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)

    ADS  CAS  PubMed  Google Scholar 

  90. Neeff, T., Lucas, R. M., Santos, J. d., Brondizio, E. S. & Freitas, C. C. Area and age of secondary forests in Brazilian Amazonia 1978–2002: an empirical estimate. Ecosystems 9, 609–623 (2006)

    Google Scholar 

  91. Almeida, A. S. d., Stone, T. A., Vieira, I. C. G. & Davidson, E. A. Non-frontier deforestation in the eastern Amazon. Earth Interact. 14, 1–15 (2010)

    Google Scholar 

  92. Luizão, F., Fearnside, P. M., Cerri, C. E. P. & Lehmann, J. in Amazonia and Global Change (eds Keller, M., Bustamante, M., Gash, J. & Dias, P. S. ) 311–336 (American Geophysical Union, 2009)

    Google Scholar 

  93. Davidson, E. A. et al. An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia. Glob. Change Biol. 14, 998–1007 (2008)

    ADS  Google Scholar 

  94. Gurney, K. R. & Eckels, W. J. Regional trends in terrestrial carbon exchange and their seasonal signatures. Tellus B 63, 328–339 (2011)

    ADS  CAS  Google Scholar 

  95. da Silva, R. R., Werth, R. D. & Avissar, R. Regional impacts of future land-cover changes on the Amazon Basin wet-season climate. J. Clim. 21, 1153–1170 (2008)

    ADS  Google Scholar 

  96. Silvestrini, R. A. et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol. Appl. 21, 1573–1590 (2011)

    PubMed  Google Scholar 

  97. Nepstad, D. C. et al. Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob. Change Biol. 10, 704–717 (2004)

    ADS  Google Scholar 

  98. Eva, H. D. et al. A land cover map of South America. Glob. Change Biol. 10, 731–744 (2004)

    ADS  Google Scholar 

  99. Sano, E. E., Rosa, R., Brito, J. L. & Ferreira, L. G. Mapeamento de Cobertura Vegetal do Bioma Cerrado: Estratégias e Resultados (Embrapa Cerrados, Planaltina, District Federal, Brazil, 2007)

    Google Scholar 

  100. Coe, M. T., Costa, M. H. & Howard, E. A. Simulating the surface waters of the Amazon River Basin: impacts of new river geomorphic and dynamic flow parameterizations. Hydrol. Process. 21, 2542–2553 (2007)

    Google Scholar 

Download references

Acknowledgements

We thank the Brazilian Ministry of Science and Technology (MCT), the National Institute for Space Research (INPE) and the National Institute of Amazonian Research (INPA) for designing, leading and managing the LBA project. We also thank D. Wickland (NASA) for more than a decade of leadership and support for the LBA-Eco project component of LBA. We thank the LBA-Eco team members who contributed to discussions on an early draft of this manuscript at a workshop in Foz do Iguaçu in August 2010, and S. Saleska for comments on the manuscript. We thank P. Lefebvre and W. Kingerlee for assistance with figure and manuscript preparation. Development of this manuscript was supported by NASA grants NNX08AF63A and NNX11AF20G.

Author information

Authors and Affiliations

Authors

Contributions

E.A.D. wrote an initial rough draft and edited the final draft of the paper. M.K. and M.T.C. contributed significant final edits. All of the other co-authors participated in an LBA-Eco team meeting at Foz do Iguaçu on August, 13, 2010, where this manuscript was designed, and either were co-leaders of breakout groups or made significant subsequent contributions of subsections of text or figures. All co-authors also provided edits throughout.

Corresponding author

Correspondence to Eric A. Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davidson, E., de Araújo, A., Artaxo, P. et al. The Amazon basin in transition. Nature 481, 321–328 (2012). https://doi.org/10.1038/nature10717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10717

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing