Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent singlet-triplet oscillations in a silicon-based double quantum dot

Abstract

Silicon is more than the dominant material in the conventional microelectronics industry: it also has potential as a host material for emerging quantum information technologies. Standard fabrication techniques already allow the isolation of single electron spins in silicon transistor-like devices. Although this is also possible in other materials, silicon-based systems have the advantage of interacting more weakly with nuclear spins. Reducing such interactions is important for the control of spin quantum bits because nuclear fluctuations limit quantum phase coherence, as seen in recent experiments in GaAs-based quantum dots1,2. Advances in reducing nuclear decoherence effects by means of complex control3,4,5 still result in coherence times much shorter than those seen in experiments on large ensembles of impurity-bound electrons in bulk silicon crystals6,7. Here we report coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure and show that this system has a nuclei-induced dephasing time of 360 nanoseconds, which is an increase by nearly two orders of magnitude over similar measurements in GaAs-based quantum dots. The degree of phase coherence observed, combined with fast, gated electrical initialization, read-out and control, should motivate future development of silicon-based quantum information processors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Device design.
Figure 2: Spin blockade in the double quantum dot.
Figure 3: Rabi oscillation pulse sequence and data.
Figure 4: T 2 * pulse sequence and data.
Figure 5: Effective exchange energy versus detuning.

References

  1. 1

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high purity silicon. Nature Mater . (in the press); preprint at 〈http://arxiv.org/abs/1105.3772〉 (2011)

  8. 8

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Eriksson, M. A. et al. Spin-based quantum dot quantum computing in silicon. Quantum Inf. Process. 3, 133–146 (2004)

    CAS  Article  Google Scholar 

  11. 11

    Borselli, M. G. et al. Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots. Appl. Phys. Lett. 99, 063109 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Goswami, S. et al. Controllable valley splitting in silicon quantum devices. Nature Phys. 3, 41–45 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Xiao, M., House, M. G. & Jiang, H. W. Parallel spin filling and energy spectroscopy in few-electron Si metal-on-semiconductor-based quantum dots. Appl. Phys. Lett. 97, 032103 (2010)

    ADS  Article  Google Scholar 

  14. 14

    Borselli, M. G. et al. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett. 98, 123118 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Lai, N. S. et al. Pauli spin blockade in a highly tunable silicon double quantum dot. Sci. Rep. 1, 110 (2011)

    CAS  Article  Google Scholar 

  16. 16

    Hayes, R. R. et al. Lifetime measurements (T1) of electron spins in Si/SiGe quantum dots. Preprint at 〈http://arxiv.org/abs/0908.0173〉 (2009)

  17. 17

    Xiao, M., House, M. G. & Jiang, H. W. Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Simmons, C. B. et al. Tunable spin loading and T 1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Liu, H. W. et al. Pauli-spin-blockade transport through a silicon double quantum dot. Phys. Rev. B 77, 073310 (2008)

    ADS  Article  Google Scholar 

  22. 22

    Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Laird, E. A. et al. Effect of exchange interaction on spin dephasing in a double quantum dot. Phys. Rev. Lett. 97, 056801 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Petta, J. R. et al. Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Coish, W. A. & Loss, D. Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)

    ADS  Article  Google Scholar 

  27. 27

    Assali, L. V. C. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011)

    ADS  Article  Google Scholar 

  28. 28

    DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Tomita, Y., Merrill, J. T. & Brown, K. R. Multi-qubit compensation sequences. N. J. Phys. 12, 015002 (2010)

    Article  Google Scholar 

  30. 30

    West, J. R., Lidar, D. A., Fong, B. H. & Gyure, M. F. High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. M. Marcus for discussions, J. R. Petta for assistance with measurement techniques and B. H. Fong for assistance with hyperfine calculations. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the US Government. Approved for public release, distribution unlimited.

Author information

Affiliations

Authors

Contributions

B.M.M., M.G.B., C.A.W., K.S.H. and A.T.H. contributed to device measurement and testing. B.H., P.W.D., I.A.-R., A.E.S. and M.S. contributed to material growth and device fabrication. B.M.M., T.D.L., A.A.K., R.S.R. and M.F.G. contributed to modelling and data analysis. B.M.M., T.D.L., A.A.K. and M.F.G prepared the manuscript.

Corresponding author

Correspondence to B. M. Maune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Figures 1-5 with legends and additional references. (PDF 962 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maune, B., Borselli, M., Huang, B. et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012). https://doi.org/10.1038/nature10707

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing