Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

Subjects

Abstract

Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the ‘Minoan’ caldera-forming eruption of Santorini volcano, Greece4, which occurred in the late 1600s bc. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40–60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Images and compositions of plagioclase crystals in Minoan pumice.
Figure 2: Concentration–distance profiles of An (red dots) and of Sr, Ti and Mg (black dots) in Minoan plagioclase crystals.
Figure 3: Melt compositions calculated by inversion of plagioclase trace-element compositions.

References

  1. 1

    Miller, C. F. & Wark, D. A. Supervolcanoes and their explosive supereruptions. Elements 4, 11–15 (2008)

    Article  Google Scholar 

  2. 2

    Newhall, C. G. & Dzurizin, D. Historical Unrest at Large Calderas of the World Vols 1 and 2 (Bull. US Geol. Surv. 1855, USGS, 1988)

    Google Scholar 

  3. 3

    Gottsmann, J. & Marti, J. (eds) Caldera Volcanism: Analysis, Modelling and Response (Dev. Volcanol. 10, Elsevier, 2008)

  4. 4

    Sigurdsson, H. & Carey, S. and 12 others. Marine investigations of Greece’s Santorini volcanic field. Trans. Am. Geophys. Union 87, 337–342 (2006)

    ADS  Article  Google Scholar 

  5. 5

    Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Costa, F., Dohmen, R. & Chakraborty, S. Timescales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69, 545–594 (2008)

    CAS  Article  Google Scholar 

  8. 8

    Bindeman, I. N., Davis, A. M. & Drake, M. J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim. Acta 62, 1175–1193 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Blundy, J. & Wood, B. Crystal-chemical control on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 55, 193–209 (1991)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Zellmer, G. F., Blake, S., Vance, D., Hawkesworth, C. & Turner, S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 136, 345–357 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Morgan, D. J. et al. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–848 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Costa, F., Chakraborty, S. & Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence time using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Druitt, T. H. et al. Santorini Volcano (J. Geol. Soc. Lond. Mem. 19, Geological Society, 1999)

  14. 14

    Cottrell, E., Gardner, J. E. & Rutherford, M. J. Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece). Contrib. Mineral. Petrol. 135, 315–331 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Martin, V., Davidson, J., Morgan, D. & Jerram, D. Using the Sr isotope compositions of feldspars and glass to distinguish magma system components and dynamics. Geology 38, 539–542 (2010)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Francalanci, L. et al. in The European Laboratory Volcanoes 175–186 (Official Publ. Eur. Comm., 1998)

  17. 17

    Huijsmans, J. Calc-Alkaline Lavas from the Volcanic Complex of Santorini, Aegean Sea, Greece (Geologica Ultraiectina 41, Inst. Aardwetenschappen Rijksuniversiteit Utrecht, 1985)

    Google Scholar 

  18. 18

    Aizawa, K., Acocella, V. & Yoshida, T. How the development of magma chambers affects collapse calderas: insights from an overview. Spec. Publ. Geol. Soc. (Lond.) 269, 65–81 (2006)

    ADS  Article  Google Scholar 

  19. 19

    Wiebe, R. A. & Collins, W. J. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J. Struct. Geol. 20, 1273–1289 (1998)

    ADS  Article  Google Scholar 

  20. 20

    Cruden, A. R. On the emplacement of tabular granites. J. Geol. Soc. Lond. 155, 853–862 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Grocott, J. Arévalo, C. Welkner, D. & Cruden, A. Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J. Geol. Soc. Lond. 166, 295–301 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Wark, D. A., Hildreth, W., Spear, F. S., Cherniak, D. J. & Watson, E. B. Pre-eruption recharge of the Bishop magma system. Geology 35, 235–238 (2007)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Saunders, K. E., Morgan, D. J., Baker, J. A. & Wysoczanski, R. J. The magmatic evolution of the Whakamaru supereruption, New Zealand, constrained by a microanalytical study of plagioclase and quartz. J. Petrol. 51, 2465–2488 (2010)

    ADS  CAS  Article  Google Scholar 

  24. 24

    de Silva, S., Salas, G. & Schubring, S. Triggering explosive eruptions: the case for silicic magma recharge at Huaynaputina, southern Peru. Geology 36, 387–390 (2008)

    ADS  CAS  Article  Google Scholar 

  25. 25

    McLeod, P. & Tait, S. R. The growth of dykes from magma chambers. J. Volcanol. Geotherm. Res. 92, 231–245 (1999)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Jellinek, A. M. & DePaulo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003)

    ADS  Article  Google Scholar 

  27. 27

    Gottsmann, J. & Battaglia, M. Deciphering causes of unrest at explosive collapse calderas: Recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies. Dev. Volcanol. 10, 417–446 (2008)

    Article  Google Scholar 

  28. 28

    Hill, D. P. Unrest in Long Valley caldera, California, 1978–2004. Spec. Publ. Geol. Soc. (Lond.) 269, 1–24 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Dzurisin, D., Yamashita, K. M. & Kleinman, J. W. Mechanisms of crustal uplift and subsidence at the Yellowstone caldera, Wyoming. Bull. Volcanol. 56, 261–270 (1994)

    ADS  Article  Google Scholar 

  30. 30

    LaTourrette, T. & Wasserbourg, G. J. Mg diffusion in anorthite: implications for the formation of early solar system planetismals. Earth Planet. Sci. Lett. 158, 91–108 (1998)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Giletti, B. J. & Casserly, J. E. D. Strontium diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta 58, 3785–3793 (1994)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Santo, A. P. Magmatic evolution processes as recorded in plagioclase phenocrysts of Nea Kameni rocks (Santorini Volcano, Greece). Dev. Volcanol. 7, 139–160 (2005)

    CAS  Article  Google Scholar 

  33. 33

    Stormer, J. C., Jr The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am. Mineral. 68, 586–594 (1983)

    CAS  Google Scholar 

  34. 34

    Andersen, D. J. & Lindsley, D. H. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Trans. Am. Geophys. Union 66, 416 (1985)

    Google Scholar 

  35. 35

    Hinton, R. W. Ion microprobe trace-element analysis of silicates: measurement of multi-element glasses. Chem. Geol. 83, 11–25 (1990)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Vaggelli, G., Pellegrini, M., Vougioukalakis, G., Innocenti, S. & Francalanci, L. Highly Sr radiogenic tholeiitic magmas in the latest inter-Plinian activity of Santorini volcano, Greece. J. Geophys. Res. 114, B06201 (2009)

    ADS  Article  Google Scholar 

  37. 37

    Conticelli, S., Francalanci, L., Santo, A. P. & Petrone, C. in The European Laboratory Volcanoes 157–174 (Official Publ. Eur. Comm., 1998)

    Google Scholar 

  38. 38

    Gertisser, R., Preece, K. & Keller, J. The Plinian lower pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J. Volcanol. Geotherm. Res. 186, 387–406 (2009)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Lasaga, A. C. Kinetic Theory in the Earth Sciences (Princeton Univ. Press, 1998)

    Google Scholar 

  40. 40

    Zhang, Y. Diffusion in minerals and melts: theoretical background. Rev. Mineral. Geochem. 72, 5–59 (2010)

    CAS  Article  Google Scholar 

  41. 41

    Dohmen, R., Becker, H.-W., Meißner, E., Etzel, T. & Chakraborty, S. Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur. J. Mineral. 14, 1155–1168 (2002)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Cherniak, D. Cation diffusion in feldspars. Rev. Mineral. Geochem. 72, 691–733 (2010)

    CAS  Article  Google Scholar 

  43. 43

    Costa, F., Coogan, L. & Chakraborty, S. The time scales of magma mixing and mingling involving primitive melts and melt–mush interaction at mid-ocean ridges. Contrib. Mineral. Petrol. 159, 371–387 (2010)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Costa, F. & Morgan, D. in Timescales of Magmatic Processes: from Core to Atmosphere (eds Dosseto, A., Turner, S. P. & Van Orman, J. A ) 125–159 (Wiley-Blackwell, 2010)

    Google Scholar 

Download references

Acknowledgements

This study was funded partly by the French Agence National de Recherche (ANR STOMIXAN, contract no. ANR-08CEA080, to B.S.). We are grateful to R. Armstrong, P. Crançon and R. Girardin for their contributions during the early stages of this study, and to J. Blundy and M. Reid for reviews. This is Laboratory of Excellence ClerVolc contribution no. 1.

Author information

Affiliations

Authors

Contributions

T.H.D. defined the project strategy, analysed the data and wrote the first draft of the manuscript, which was then revised by all the authors. E.D., M.D. and T.H.D. made the trace-element analyses, F.C. did the diffusion modelling and B.S. performed the fluid dynamic calculations.

Corresponding author

Correspondence to T. H. Druitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends, Supplementary Tables 1-3, a Supplementary Discussion and additional references. (PDF 669 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Druitt, T., Costa, F., Deloule, E. et al. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012). https://doi.org/10.1038/nature10706

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing