Abstract
Small multidrug resistance transporters provide an ideal system to study the minimal requirements for active transport. EmrE is one such transporter in Escherichia coli. It exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. Förster resonance energy transfer reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a ‘dynamic symmetry’ that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility
Nature Communications Open Access 10 December 2022
-
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport
Nature Communications Open Access 18 February 2022
-
Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers
Nature Communications Open Access 08 January 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Arkin, I. T., Russ, W. P., Lebendiker, M. & Schuldiner, S. Determining the secondary structure and orientation of EmrE, a multi-drug transporter, indicates a transmembrane four-helix bundle. Biochemistry 35, 7233–7238 (1996)
Yerushalmi, H., Lebendiker, M. & Schuldiner, S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem. 270, 6856–6863 (1995)
Schuldiner, S. EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim. Biophys. Acta 1794, 748–762 (2009)
Tate, C. G., Ubarretxena-Belandia, I. & Baldwin, J. M. Conformational changes in the multidrug transporter EmrE associated with substrate binding. J. Mol. Biol. 332, 229–242 (2003)
Butler, P. J., Ubarretxena-Belandia, I., Warne, T. & Tate, C. G. The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J. Mol. Biol. 340, 797–808 (2004)
Ubarretxena-Belandia, I. & Tate, C. G. New insights into the structure and oligomeric state of the bacterial multidrug transporter EmrE: an unusual asymmetric homo-dimer. FEBS Lett. 564, 234–238 (2004)
Chen, Y. J. et al. X-ray structure of EmrE supports dual topology model. Proc. Natl Acad. Sci. USA 104, 18999–19004 (2007)
Ninio, S., Elbaz, Y. & Schuldiner, S. The membrane topology of EmrE – a small multidrug transporter from Escherichia coli . FEBS Lett. 562, 193–196 (2004)
Rapp, M., Seppälä, S., Granseth, E. & von Heijne, G. Emulating membrane protein evolution by rational design. Science 315, 1282–1284 (2007)
McHaourab, H. S., Mishra, S., Koteiche, H. A. & Amadi, S. H. Role of sequence bias in the topology of the multidrug transporter EmrE. Biochemistry 47, 7980–7982 (2008)
Steiner-Mordoch, S. et al. Parallel topology of genetically fused EmrE homodimers. EMBO J. 27, 17–26 (2008)
Korkhov, V. M. & Tate, C. G. An emerging consensus for the structure of EmrE. Acta Crystallogr. D 65, 186–192 (2009)
Amadi, S. T., Koteiche, H. A., Mishra, S. & McHaourab, H. S. Structure, dynamics and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes. J. Biol. Chem. 285, 26710–26718 (2010)
Soskine, M., Mark, S., Tayer, N., Mizrachi, R. & Schuldiner, S. On parallel and antiparallel topology of a homodimeric multidrug transporter. J. Biol. Chem. 281, 36205–36212 (2006)
Charalambous, K., Miller, D., Curnow, P. & Booth, P. J. Lipid bilayer composition influences small multidrug transporters. BMC Biochem. 9, 31 (2008)
Seppala, S., Slusky, J., Lloris-Garcera, P., Rapp, M. & Von Heijne, G. Control of membrane protein topology by a single C-terminal residue. Science 328, 1698–1700 (2010)
Nasie, I., Steiner-Mordoch, S., Gold, A. & Schuldiner, S. Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J. Biol. Chem. 285, 15234–15244 (2010)
Fleishman, S. J. et al. Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J. Mol. Biol. 364, 54–67 (2006)
Yerushalmi, H. & Schuldiner, S. A model for coupling of H+ and substrate fluxes based on ‘time-sharing’ of a common binding site. Biochemistry 39, 14711–14719 (2000)
Adam, Y., Tayer, N., Rotem, D., Schreiber, G. & Schuldiner, S. The fast release of sticky protons: kinetics of substrate binding and proton release in a multidrug transporter. Proc. Natl Acad. Sci. USA 104, 17989–17994 (2007)
Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)
West, I. C. Ligand conduction and the gated-pore mechanism of transmembrane transport. Biochim. Biophys. Acta 1331, 213–234 (1997)
Glover, K. J. et al. Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys. J. 81, 2163–2171 (2001)
Whiles, J., Ceems, R. & Vold, R. Bicelles in structure–function studies of membrane-associated proteins. Bioorg. Chem. 30, 431–442 (2002)
Raschle, T., Hiller, S., Etzkorn, M. & Wagner, G. Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20, 471–479 (2010)
Lehner, I. et al. The key residue for substrate transport (Glu14) in the EmrE dimer is asymmetric. J. Biol. Chem. 283, 3281–3288 (2008)
Ubarretxena-Belandia, I., Baldwin, J. M., Schuldiner, S. & Tate, C. G. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22, 6175–6181 (2003)
Rotem, D. & Schuldiner, S. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J. Biol. Chem. 279, 48787–48793 (2004)
Soskine, M., Adam, Y. & Schuldiner, S. Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J. Biol. Chem. 279, 9951–9955 (2004)
Yerushalmi, H., Mordoch, S. S. & Schuldiner, S. A single carboxyl mutant of the multidrug transporter EmrE is fully functional. J. Biol. Chem. 276, 12744–12748 (2001)
Muth, T. R. & Schuldiner, S. A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE. EMBO J. 19, 234–240 (2000)
Sanders, C. R. & Sönnichsen, F. Solution NMR of membrane proteins: practice and challenges. Magn. Reson. Chem 44 (NMR of Proteins in Solution special issue). S24–S40 (2006)
Miller, D. et al. In vitro unfolding and refolding of the small multidrug transporter EmrE. J. Mol. Biol. 393, 815–832 (2009)
Sikora, C. W. & Turner, R. J. Investigation of ligand binding to the multidrug resistance protein EmrE by isothermal titration calorimetry. Biophys. J. 88, 475–482 (2005)
Li, Y. & Palmer, A. G. TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins. J. Biomol. Nucl. Magn. Reson. 45, 357–360 (2009)
Farrow, N. A., Zhang, O., Forman-Kay, J. D. & Kay, L. E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. Nucl. Magn. Reson. 4, 727–734 (1994)
Miloushev, V. Z. et al. Dynamic properties of a type II cadherin adhesive domain: implications for the mechanism of strand-swapping of classical cadherins. Structure 16, 1195–1205 (2008)
Nara, T. et al. Anti-parallel membrane topology of a homo-dimeric multidrug transporter, EmrE. J. Biochem. 142, 621–625 (2007)
Korkhov, V. M. & Tate, C. G. Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE. J. Mol. Biol. 377, 1094–1103 (2008)
Agarwal, V., Fink, U., Schuldiner, S. & Reif, B. MAS solid-state NMR studies on the multidrug transporter EmrE. Biochim. Biophys. Acta 1768, 3036–3043 (2007)
Mordoch, S. S., Granot, D., Lebendiker, M. & Schuldiner, S. Scanning cysteine accessibility of EmrE, an H+-coupled multidrug transporter from Escherichia coli, reveals a hydrophobic pathway for solutes. J. Biol. Chem. 274, 19480–19486 (1999)
Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996)
Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)
Sharoni, M., Steiner-Mordoch, S. & Schuldiner, S. Exploring the binding domain of EmrE, the smallest multidrug transporter. J. Biol. Chem. 280, 32849–32855 (2005)
Weinglass, A. B. et al. Exploring the role of a unique carboxyl residue in EmrE by mass spectrometry. J. Biol. Chem. 280, 7487–7492 (2005)
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. Nucl. Magn. Reson. 6, 277–293 (1995)
Johnson, B. A. & Blevins, R. A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. Nucl. Magn. Reson. 4, 603–614 (1994)
Goddard, T. D., & Kneller, D. G . Sparky 3. University of California, San Francisco
Rotem, D., Sal-man, N. & Schuldiner, S. In vitro monomer swapping in EmrE, a multidrug transporter from Escherichia coli, reveals that the oligomer is the functional unit. J. Biol. Chem. 276, 48243–48249 (2001)
Acknowledgements
We thank Y. Liu for assistance replicating the ITC data. We thank J. Villali for assistance growing isotopically labelled EmrE. We are grateful to Y. Li and A. Palmer for providing pulse programs and G. Chang for providing the EmrE expression plasmid. This work was supported by the National Institutes of Health (1R01GM095839) and the Searle Scholars Program (K.H.W.), the US Department of Energy, Office of Basic Energy Sciences (D.K.), the Howard Hughes Medical Institute (D.K. and T.H.), and an NSF graduate research fellowship to E.M. (DGE-1143954).
Author information
Authors and Affiliations
Contributions
E.M. and K.H.W. optimized EmrE sample preparation, performed ITC experiments and recorded two-dimensional NMR spectra under different conditions. E.M. and G.D. performed the bulk FRET experiments. S.D. and R.V. performed the single molecule FRET experiments with guidance from T.H. G.D. and M.C. optimized the modified ZZ-exchange NMR experiment. M.C. collected the ZZ-exchange data and K.H.W. analysed it. G.D. performed the paramagnetic relaxation enhancement NMR experiments. A.B., E.M., G.D. and K.H.W. contributed to assignments. D.K. mentored initial project development. K.H.W. conceived the project and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains Supplementary Figures 1-15 with legends, full-page versions of Figures 1c, 2a and 4a from the main paper, Supplementary Table 1, Supplementary Discussion and additional references. (PDF 7376 kb)
Rights and permissions
About this article
Cite this article
Morrison, E., DeKoster, G., Dutta, S. et al. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481, 45–50 (2012). https://doi.org/10.1038/nature10703
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10703
This article is cited by
-
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport
Nature Communications (2022)
-
Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility
Nature Communications (2022)
-
Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers
Nature Communications (2021)
-
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures
Nature Reviews Drug Discovery (2019)
-
Function-related conformational dynamics of G protein–coupled receptors revealed by NMR
Biophysical Reviews (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.