Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation


NF-κB is crucial for innate immune defence against microbial infection1,2. Inhibition of NF-κB signalling has been observed with various bacterial infections3,4. The NF-κB pathway critically requires multiple ubiquitin-chain signals of different natures5,6. The question of whether ubiquitin-chain signalling and its specificity in NF-κB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-κB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-κB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-κB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-κB signalling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: NleE blocks NF-κB signalling downstream of TRAFs and upstream of TAK1.
Figure 2: NleE directly targets TAB2 and TAB3 and impairs their ubiquitin-chain binding activity.
Figure 3: NleE is a SAM-dependent methyltransferase that specifically modifies Cys 673/692 in TAB2/3-NZF domains.
Figure 4: Cysteine methylation-induced loss of ubiquitin-chain binding of TAB2/3 contributes to NleE inhibition of host NF-κB signalling.


  1. 1

    Hayden, M. S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Roy, C. R. & Mocarski, E. S. Pathogen subversion of cell-intrinsic innate immunity. Nature Immunol. 8, 1179–1187 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Terzic, J., Marinovic-Terzic, I., Ikeda, F. & Dikic, I. Ubiquitin signals in the NF-κB pathway. Biochem. Soc. Trans. 35, 942–945 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Skaug, B., Jiang, X. & Chen, Z. J. The role of ubiquitin in NF-κB regulatory pathways. Annu. Rev. Biochem. 78, 769–796 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Cui, J. & Shao, F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem. Sci. 36, 532–540 (2011)

    CAS  Article  Google Scholar 

  8. 8

    Nadler, C. et al. The type III secretion effector NleE inhibits NF-κB activation. PLoS Pathog. 6, e1000743 (2010)

    Article  Google Scholar 

  9. 9

    Newton, H. J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 6, e1000898 (2010)

    Article  Google Scholar 

  10. 10

    Vossenkämper, A. et al. Inhibition of NF-κB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J. Immunol. 185, 4118–4127 (2010)

    Article  Google Scholar 

  11. 11

    Ishitani, T. et al. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J. 22, 6277–6288 (2003)

    CAS  Article  Google Scholar 

  12. 12

    Cheung, P. C., Nebreda, A. R. & Cohen, P. TAB3, a new binding partner of the protein kinase TAK1. Biochem. J. 378, 27–34 (2004)

    CAS  Article  Google Scholar 

  13. 13

    Jin, G. et al. Identification of a human NF-κB-activating protein, TAB3. Proc. Natl Acad. Sci. USA 101, 2028–2033 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Singhirunnusorn, P., Suzuki, S., Kawasaki, N., Saiki, I. & Sakurai, H. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J. Biol. Chem. 280, 7359–7368 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Struct. Mol. Biol. 16, 1328–1330 (2009)

    CAS  Article  Google Scholar 

  17. 17

    Sato, Y., Yoshikawa, A., Yamashita, M., Yamagata, A. & Fukai, S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J. 28, 3903–3909 (2009)

    CAS  Article  Google Scholar 

  18. 18

    Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Meyer, H. H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645–5652 (2002)

    CAS  Article  Google Scholar 

  23. 23

    Wang, B. et al. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J. Biol. Chem. 278, 20225–20234 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885–2895 (2009)

    CAS  Article  Google Scholar 

  25. 25

    Alam, S. L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Sedgwick, B., Robins, P., Totty, N. & Lindahl, T. Functional domains and methyl acceptor sites of the Escherichia coli Ada protein. J. Biol. Chem. 263, 4430–4433 (1988)

    CAS  PubMed  Google Scholar 

  27. 27

    He, C. et al. A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. Mol. Cell 20, 117–129 (2005)

    CAS  Article  Google Scholar 

  28. 28

    Castro, C. et al. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis. Biochemistry 43, 5341–5351 (2004)

    CAS  Article  Google Scholar 

  29. 29

    Koutmos, M. et al. Metal active site elasticity linked to activation of homocysteine in methionine synthases. Proc. Natl Acad. Sci. USA 105, 3286–3291 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Matthews, R. G. & Goulding, C. W. Enzyme-catalyzed methyl transfers to thiols: the role of zinc. Curr. Opin. Chem. Biol. 1, 332–339 (1997)

    CAS  Article  Google Scholar 

  31. 31

    Ge, J. et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl Acad. Sci. USA 106, 13725–13730 (2009)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Gong, Y. N. et al. Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Res. 20, 1289–1305 (2010)

    CAS  Article  Google Scholar 

  34. 34

    Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Reyes-Turcu, F. E., Shanks, J. R., Komander, D. & Wilkinson, K. D. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283, 19581–19592 (2008)

    CAS  Article  Google Scholar 

Download references


We thank I. Rosenshine for providing NleE deletion strains, K. Iwai for the HOIL-1L and HOIP expression plasmids, H. Sakurai for the phospho-TAK1 antibody, Z. Chen for TAB2/3 and Npl4-NZF chimera constructs, and S. Fukai for the NZF expression plasmid. We also thank members of the Shao laboratory for helpful discussions and technical assistance. This work was supported by the National Basic Research Program of China (973 Programs, 2010CB835400 and 2012CB518700).

Author information




L.Z. performed the majority of the experiments, assisted by J.C., H.X. and Y.-N.G.; X.D. and S.C. performed mass spectrometry analysis and analysed the data. J.C., L.H., Y. Z., J.G., Q.L. and L.L. generated reagents. L.Z. and F.S. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Feng Shao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-29 with legends. (PDF 7695 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L., Ding, X., Cui, J. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481, 204–208 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing