Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates


Plate tectonics, which shapes the surface of Earth, is the result of solid-state convection in Earth’s mantle over billions of years. Simply driven by buoyancy forces, mantle convection is complicated by the nature of the convecting materials, which are not fluids but polycrystalline rocks. Crystalline materials can flow as the result of the motion of defects—point defects, dislocations, grain boundaries and so on. Reproducing in the laboratory the extreme deformation conditions of the mantle is extremely challenging. In particular, experimental strain rates are at least six orders of magnitude larger than in nature1. Here we show that the rheology of MgO at the pressure, temperature and strain rates of the mantle is accessible by multiscale numerical modelling starting from first principles and with no adjustable parameters. Our results demonstrate that extremely low strain rates counteract the influence of pressure. In the mantle, MgO deforms in the athermal regime and this leads to a very weak phase. It is only in the lowermost lower mantle that the pressure effect could dominate and that, under the influence of lattice friction, a viscosity of the order of 1021–1022 pascal seconds can be defined for MgO.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Evolution of the critical resolved shear stress (CRSS) with temperature.
Figure 2: Evolution with stress of the velocity of a ½<110> screw dislocation in MgO gliding in {110} at 60 GPa and 1,500 K.
Figure 3: Influence of the strain rate and of temperature on the deformation mechanisms of MgO at four pressures.
Figure 4: Deformation mechanisms of MgO under mantle conditions, and a typical mantle strain rate of 10−16 s−1.
Figure 5: MgO viscosity profile in the layer (shown in the inset) governed by the thermally activated deformation regime.


  1. Paterson, M. S. Problems in the extrapolation of laboratory rheological data. Tectonophysics 133, 33–43 (1987)

    ADS  Article  Google Scholar 

  2. Raterron, P. & Merkel, S. In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography. J. Synchrotron Radiat. 16, 748–756 (2009)

    Article  Google Scholar 

  3. Poirier, J. P. Creep of Crystals (Cambridge Univ. Press, 1985)

    Book  Google Scholar 

  4. Karato, S. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008)

    Book  Google Scholar 

  5. Heard, H. C. Effect of large changes in strain rate in the experimental deformation of Yule marble. J. Geol. 71, 162–195 (1963)

    ADS  CAS  Article  Google Scholar 

  6. Peierls, R. The size of a dislocation. Proc. Phys. Soc. Lond. 52, 34–37 (1940)

    ADS  Article  Google Scholar 

  7. Caillard, D. & Martin, J. L. Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, 2003)

    Google Scholar 

  8. Bulatov, V. V. & Kubin, L. P. Dislocation modelling at atomistic and mesoscopic scales. Curr. Opin. Solid State Mater. Sci. 3, 558–561 (1998)

    ADS  CAS  Article  Google Scholar 

  9. Needleman, A. Computational mechanics at the mesoscale. Acta Mater. 48, 105–124 (2000)

    MathSciNet  CAS  Article  Google Scholar 

  10. de la Rubia, T. D. & Bulatov, V. V. Materials research by means of multiscale computer simulations. Mater. Res. Soc. Bull. 26, 169–175 (2001)

    Article  Google Scholar 

  11. Ammann, M. W., Brodholt, J. P., Wookey, J. & Dobson, D. P. First-principles constraints on diffusion in lower-mantle minerals and a weak D'' layer. Nature 465, 462–465 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Amodeo, J., Carrez, P., Devincre, B. & Cordier, P. Multiscale modelling of MgO plasticity. Acta Mater. 59, 2291–2301 (2011)

    CAS  Article  Google Scholar 

  13. Cai, W., Bulatov, V. V., Chang, J., Li, J. & Yip, S. in Dislocations in Solids Vol. 12 (eds Nabarro, F. N. R. & Hirth, J. P. ) 1–80 (Elsevier, 2004)

    Book  Google Scholar 

  14. Seeger, A. & Schiller, P. Bildung und Diffusion von Kinken als Grundprozess der Versetzungsbewegung bei der Messung der inneren Reibung. Acta Metall. 10, 348–357 (1962)

    CAS  Article  Google Scholar 

  15. Guyot, P. & Dorn, J. E. A critical review of Peierls mechanism. Can. J. Phys. 45, 983–1016 (1967)

    ADS  Article  Google Scholar 

  16. Devincre, B., Kubin, L. P., Lemarchand, C. & Madec, R. Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309–310, 211–219 (2001)

    Article  Google Scholar 

  17. Amodeo, J., Carrez, P. & Cordier, P. Modelling the effect of pressure on the critical shear stress of MgO single crystals. Phil. Mag. (in the press)

  18. Frost, H. J. & Ashby, M. F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, 1982)

    Google Scholar 

  19. Nabarro, F. R. N. One-dimensional models of thermal activation under shear stress. Phil. Mag. 83, 3047–3054 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Tang, M., Kubin, L. P. & Canova, G. R. Dislocation mobility and the mechanical response of bcc crystals: a mesoscopic approach. Acta Mater. 46, 3221–3235 (1998)

    CAS  Article  Google Scholar 

  21. Monnet, G., Devincre, B. & Kubin, L. P. Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium. Acta Mater. 52, 4317–4328 (2004)

    CAS  Article  Google Scholar 

  22. Ono, S. Experimental constraints on the temperature profile in the lower mantle. Phys. Earth Planet. Inter. 170, 267–273 (2008)

    ADS  CAS  Article  Google Scholar 

  23. Paterson, M. S. Relating experimental and geological rheology. Int. J. Earth Sci. 90, 157–167 (2001)

    Article  Google Scholar 

  24. Forte, A. M. & Mitrovica, J. X. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1056 (2001)

    ADS  CAS  Article  Google Scholar 

  25. Denoual, C. Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods. Phys. Rev. B 70, 024106 (2004)

    ADS  Article  Google Scholar 

  26. Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993)

    ADS  CAS  Article  Google Scholar 

  27. Koizumi, H., Kirchner, H. O. K. & Suzuki, T. Kink pair nucleation and critical shear-stress. Acta Metall. Mater. 41, 3483–3493 (1993)

    CAS  Article  Google Scholar 

  28. Anderson, O. L. The Earth’s core and the phase diagram of iron. Phil. Trans. R. Soc. Lond. A 306, 21–35 (1982)

    ADS  CAS  Article  Google Scholar 

  29. Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981)

    ADS  Article  Google Scholar 

  30. Schuberth, B. S. A., Bunge, H.-P., Steinle-Neumann, G., Moder, C. & Oeser, J. Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem. Geophys. Geosyst. 10, Q01W01 (2009)

    Google Scholar 

  31. Joós, B., Ren, Q. & Duesbery, M. S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Phys. Rev. B 50, 5890–5898 (1994)

    ADS  Article  Google Scholar 

  32. Bulatov, V. V. & Kaxiras, E. Semidiscrete variational Peierls framework for dislocation core properties. Phys. Rev. Lett. 78, 4221–4224 (1997)

    ADS  CAS  Article  Google Scholar 

  33. Schoeck, G. The core structure of dislocations: Peierls model vs. atomic calculations. Acta Mater. 54, 4865–4870 (2006)

    CAS  Article  Google Scholar 

  34. Denoual, C. Modeling dislocation by coupling Peierls-Nabarro and element-free Galerkin methods. Comput. Methods Appl. Mech. Eng. 196, 1915–1923 (2007)

    ADS  Article  Google Scholar 

  35. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    CAS  Article  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    ADS  Article  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    CAS  Article  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)

    ADS  CAS  Article  Google Scholar 

  39. Vítek, V. Intrinsic stacking faults in body-centered cubic crystals. Phil. Mag. 18, 773–786 (1968)

    ADS  Article  Google Scholar 

  40. Monkhorst, H. J. & Pack, J. D. On special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  41. Hirth, J. P. & Lothe, J. Theory of Dislocations (Wiley, 1982)

    MATH  Google Scholar 

  42. Schoeck, G. The activation energy of dislocation movement. Phys. Status Solidi 8, 499–507 (1965)

    CAS  Article  Google Scholar 

  43. Madec, R., Devincre, B. & Kubin, L. P. in IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (eds Koizumi, H. & Yip, S.) 35–44 (Kluwer, 2004)

    Book  Google Scholar 

  44. Kubin, L. P., Madec, R. & Devincre, R. Dislocation intersections and reactions in FCC and BCC crystals. Mater. Res. Soc. Symp. Proc. 779, 25–36 (2003)

    Google Scholar 

Download references


This work was supported by ANR (Diup project).

Author information

Authors and Affiliations



P.C. conceived the project. P.C. and Ph.C. designed the work. J.A. and Ph.C. performed numerical simulations. All authors discussed and interpreted the results. P.C. wrote the paper with feedback and contributions from all co-authors.

Corresponding authors

Correspondence to Patrick Cordier or Philippe Carrez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Tables 1-4, Supplementary Figures 1-6 with legends and additional references. (PDF 411 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cordier, P., Amodeo, J. & Carrez, P. Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates. Nature 481, 177–180 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing