Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A role for graphene in silicon-based semiconductor devices

Abstract

As silicon-based electronics approach the limit of improvements to performance and capacity through dimensional scaling, attention in the semiconductor field has turned to graphene, a single layer of carbon atoms arranged in a honeycomb lattice. Its high mobility of charge carriers (electrons and holes) could lead to its use in the next generation of high-performance devices. Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap. But it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of 'nothing-on-graphene' architecture, which minimizes the scattering of electrons.
Figure 2: Structure of a graphene-gated optical modulator.
Figure 3: The structure of graphene photo-detectors with integrated waveguides.
Figure 5: Proposed device structures and process requirements for graphene and hBN films.
Figure 4: Direct growth of graphene and hBN.

Similar content being viewed by others

References

  1. Kim, K. From the future Si technology perspective: challenges and opportunities. Tech. Digest Int. Electron Devices Meet. 10, 1–9 (IEEE, 2010).

    Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (IEEE, 2005).

    Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  CAS  PubMed  Google Scholar 

  4. Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    ADS  CAS  PubMed  Google Scholar 

  5. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). This paper reports the discovery of graphene by deposition of a graphene monolayer on a silicon substrate and the measurement of its field effect mobility to demonstrate its potential for electronic application.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    ADS  CAS  Google Scholar 

  7. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). This paper demonstrates an optical modulator using graphene for the first time.

    ADS  CAS  PubMed  Google Scholar 

  8. Xia, F. et al. Ultrafast graphene photodetector. Nature Nanotechnol. 4, 839–843 (2009).

    ADS  CAS  Google Scholar 

  9. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  CAS  Google Scholar 

  10. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Avouris, P. et al. Graphene-based fast electronics and optoelectronics. Tech. Digest Int. Electron Devices Meet. 10, 552–555 (IEEE, 2010).

    Google Scholar 

  12. Lee, J. et al. RF performance of pre-patterned locally-embedded-back-gate graphene device. Tech. Digest Int. Electron Devices Meet. 10, 568–571 (IEEE, 2010).

    Google Scholar 

  13. Lee, S. et al. Record RF performance of 45-nm SOI CMOS technology. Tech. Digest Int. Electron Devices Meet. 568–571 (IEEE, 2007).

    Google Scholar 

  14. Lai, R. et al. Sub 50-nm InP HEMT device with F max greater than 1 THz. Tech. Digest Int. Electron Devices Meet. 609–611 (IEEE, 2007).

    Google Scholar 

  15. Kim, D.-H. et al. 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz. IEEE Electron. Device Lett. 29, 830–833 (2008).

    ADS  CAS  Google Scholar 

  16. Singisetti, U. et al. Ultralow resistance in situ ohmic contacts to InGaAs/InP. Appl. Phys. Lett. 93, 183502 (2008).

    ADS  Google Scholar 

  17. Liao, L. et al. Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952–3956 (2010). This paper reports on a graphene transistor's performance, its feasibility and limits for radio-frequency applications, and suggests that graphene can outperform silicon-based radio-frequency transistors.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwierz, F. Industry-compatible graphene transistors. Nature 472, 41–42 (2011).

    ADS  CAS  PubMed  Google Scholar 

  19. Meric, I. et al. Channel length scaling in graphene field-effect transistors studied with pulsed current−voltage measurements. Nano Lett. 11, 1093–1097 (2011).

    ADS  CAS  PubMed  Google Scholar 

  20. Meric, I. et al. Graphene field-effect transistors based on boron nitride gate dielectrics. Tech. Digest Int. Electron Devices Meet. 10, 556–559 (IEEE, 2010).

    Google Scholar 

  21. Lin, Y.-M. et al. 100-GHz Transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    ADS  CAS  PubMed  Google Scholar 

  22. Adam, S. et al. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson, J. et al. Contacting graphene. Appl. Phys. Lett. 98, 053103 (2011).

    ADS  Google Scholar 

  24. Nagashio, N. et al. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. Tech. Digest Int. Electron Devices Meet. 9, 565–568 (IEEE, 2009).

    Google Scholar 

  25. Bolotin, K. I. et al. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    ADS  CAS  PubMed  Google Scholar 

  26. Hwang, E. H. et al. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

    ADS  CAS  PubMed  Google Scholar 

  27. Nomura, K. et al. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    ADS  PubMed  Google Scholar 

  28. Chen, J.-H. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotechnol. 3, 206–209 (2008).

    CAS  Google Scholar 

  29. Isigami, M. et al. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    ADS  Google Scholar 

  30. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    ADS  CAS  PubMed  Google Scholar 

  31. Deshpande, A. et al. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009).

    ADS  Google Scholar 

  32. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 5, 722–726 (2010).

    ADS  CAS  Google Scholar 

  33. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    ADS  CAS  Google Scholar 

  34. Jeon, I. et al. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition. ACS Nano 5, 1915–1920 (2011).

    CAS  PubMed  Google Scholar 

  35. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  36. Xia, F. et al. The origins and limits of metal–graphene junction resistance. Nature Nanotechnol. 6, 179–184 (2011).

    ADS  CAS  Google Scholar 

  37. Heersche, H. B. et al. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    ADS  CAS  PubMed  Google Scholar 

  38. Russo, S. et al. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010).

    ADS  CAS  Google Scholar 

  39. Grosse, K. L. et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nature Nanotechnol. 6, 287–290 (2008).

    ADS  Google Scholar 

  40. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    ADS  PubMed  Google Scholar 

  41. Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    ADS  CAS  Google Scholar 

  42. Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    ADS  CAS  PubMed  Google Scholar 

  43. Xia, F. et al. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    ADS  CAS  PubMed  Google Scholar 

  44. Kim, M. et al. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125–1131 (2010).

    ADS  CAS  PubMed  Google Scholar 

  45. Liang, X. et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454–2460 (2010).

    ADS  CAS  PubMed  Google Scholar 

  46. Bai, J. et al. Graphene nanomesh. Nature Nanotechnol. 5, 190–194 (2010).

    ADS  CAS  Google Scholar 

  47. Palacios, T. et al. Applications of graphene devices in RF communications. IEEE Commun. Mag. 48, 122–128 (2010).

    Google Scholar 

  48. Wang, H. et al. Graphene frequency multiplier. IEEE Electron Device Lett. 30, 547–549 (2009).

    ADS  CAS  Google Scholar 

  49. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    ADS  CAS  PubMed  Google Scholar 

  50. Benner, A. Optical interconnects for HPC. Optoelectronics Indust. Dev. Assoc. Workshop (OIDA, 2011).

    Google Scholar 

  51. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    CAS  Google Scholar 

  52. Shacham, A. et al. Photonic networks-on-chip for future generations of chip multi-processors. IEEE Trans. Comput. 57, 1246–1260 (2008).

    MathSciNet  Google Scholar 

  53. Nairl, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    ADS  Google Scholar 

  54. Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nature Photonics 4, 611–622 (2010).

    ADS  CAS  Google Scholar 

  55. Eigler, S. A new parameter based on graphene for characterizing transparent, conductive materials. Carbon 47, 2936–2939 (2009).

    CAS  Google Scholar 

  56. Wang, F. et al. Gate variable optical transitions in graphene. Science 320, 206–209 (2008).

    ADS  CAS  PubMed  Google Scholar 

  57. Reed, G. T. et al. Silicon optical modulators. Nature Photonics 4, 518–526 (2010).

    ADS  CAS  Google Scholar 

  58. Green, W. M. et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    ADS  PubMed  Google Scholar 

  59. Liao, L. et al. 40 Gbit/s silicon optical modulator for high speed applications. Electron. Lett. 43, 1196–1197 (2007).

    CAS  Google Scholar 

  60. Watts, M. R. et al. Silicon microdisk modulators and switches. Proc. 5th IEEE Int. Conf. Group IV Photonics 4–6 (IEEE, 2008).

    Google Scholar 

  61. Xu, Q. et al. 12.5 Gbit/s carrier-injection based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    ADS  PubMed  Google Scholar 

  62. Feng, N. et al. 30G Hz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Opt. Express 19, 7062–7067 (2011).

    ADS  CAS  PubMed  Google Scholar 

  63. Tang, Y. 50 Gb/s hybrid silicon traveling wave electroabsorption modulator. Opt. Express 19, 5811–5816 (2011).

    ADS  PubMed  Google Scholar 

  64. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010).

    ADS  CAS  Google Scholar 

  65. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnol. 3, 654–659 (2008).

    ADS  CAS  Google Scholar 

  66. Yin, T. et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15, 13965–13971 (2007).

    ADS  CAS  PubMed  Google Scholar 

  67. Vivien, L. et al. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 17, 6252–6257 (2009).

    ADS  CAS  PubMed  Google Scholar 

  68. Ishikawa, Y. Near-infrared Ge photodiodes for Si photonics: operation frequency and an approach for the future. IEEE Photonics J. 2, 306–320 (2010).

    ADS  Google Scholar 

  69. Park, J. et al. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    ADS  CAS  PubMed  Google Scholar 

  70. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    ADS  CAS  PubMed  Google Scholar 

  71. Mueller, T. et al. Graphene photodetectors for high-speed optical communications. Nature Photonics 4, 297–301 (2010). This paper demonstrates a graphene photo-detector in a 10 Gbit s−1 optical data link for the first time.

    CAS  Google Scholar 

  72. Assefa, S. L. et al. CMOS-integrated optical receivers for on-chip interconnects. IEEE J. Sel. Top. Quant. Electron. 16, 1376–1385 (2010).

    ADS  CAS  Google Scholar 

  73. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

    ADS  CAS  PubMed  Google Scholar 

  74. Mueller, T. et al. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    ADS  Google Scholar 

  75. Farmer. D. B. et al. Behavior of a chemically doped graphene junction. Appl. Phys. Lett. 94, 213106 (2009).

    ADS  Google Scholar 

  76. Brenner. K. et al. Single step, complementary doping of graphene. Appl. Phys. Lett. 96, 063104 (2010).

    ADS  Google Scholar 

  77. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    ADS  CAS  PubMed  Google Scholar 

  78. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    ADS  CAS  Google Scholar 

  79. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    ADS  CAS  PubMed  Google Scholar 

  80. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    ADS  CAS  PubMed  Google Scholar 

  81. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). This report showed the possibility of growing a high-quality single layer of graphene (more than 95%) by CVD on copper foil.

    ADS  CAS  PubMed  Google Scholar 

  82. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    ADS  CAS  PubMed  Google Scholar 

  83. Levendorf, M. P. et al. Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 9, 4479–4483 (2009).

    ADS  CAS  PubMed  Google Scholar 

  84. Hofrichter, J. et al. Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10, 36–42 (2010).

    ADS  CAS  PubMed  Google Scholar 

  85. Ismach, A. et al. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010).

    ADS  CAS  PubMed  Google Scholar 

  86. Park, J. et al. Epitaxial graphene growth by carbon molecular beam epitaxy (MBE). Adv. Mater. 22, 4140–4145 (2010).

    CAS  PubMed  Google Scholar 

  87. Zhang, L. et al. Catalyst-free growth of nanographene films on various substrates. Nano Res. 4, 315–321 (2011).

    CAS  Google Scholar 

  88. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    ADS  CAS  PubMed  Google Scholar 

  89. Shi, Y. M. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010).

    ADS  CAS  PubMed  Google Scholar 

  90. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U.-I. Chung, H. Kim, Y. Y. Lee, S. Jeon and S.-H. Lee for assisting with scientific discussions and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinam Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Choi, JY., Kim, T. et al. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011). https://doi.org/10.1038/nature10680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10680

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing