Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A disinhibitory microcircuit for associative fear learning in the auditory cortex


Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Foot-shock responses in auditory cortex L1 interneurons.
Figure 2: Nicotinic activation of L1 interneurons by foot shocks.
Figure 3: Aversive shocks inhibit layer 2/3 PV + interneurons.
Figure 4: Aversive shocks disinhibit L2/3 pyramidal neurons.
Figure 5: Auditory cortex disinhibition is required for fear learning.


  1. 1

    Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002)

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Hübener, M. & Bonhoeffer, T. Searching for engrams. Neuron 67, 363–371 (2010)

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005)

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6

    Freund, T. F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007)

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997)

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Lawrence, J. J. Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci. 31, 317–327 (2008)

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Bacci, A., Huguenard, J. R. & Prince, D. A. Modulation of neocortical interneurons: extrinsic influences and exercises in self-control. Trends Neurosci. 28, 602–610 (2005)

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Kruglikov, I. & Rudy, B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58, 911–924 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Metherate, R. Nicotinic acetylcholine receptors in sensory cortex. Learn. Mem. 11, 50–59 (2004)

    PubMed  Article  Google Scholar 

  12. 12

    Vogels, T. P. & Abbott, L. F. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neurosci. 12, 483–491 (2009)

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Suga, N. & Ma, X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Rev. Neurosci. 4, 783–794 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Weinberger, N. M. Auditory associative memory and representational plasticity in the primary auditory cortex. Hear. Res. 229, 54–68 (2007)

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997)

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Ji, W., Suga, N. & Gao, E. Effects of agonists and antagonists of NMDA and ACh receptors on plasticity of bat auditory system elicited by fear conditioning. J. Neurophysiol. 94, 1199–1211 (2005)

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18

    LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000)

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Campeau, S. & Davis, M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15, 2312–2327 (1995)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Boatman, J. A. & Kim, J. J. A thalamo-cortico-amygdala pathway mediates auditory fear conditioning in the intact brain. Eur. J. Neurosci. 24, 894–900 (2006)

    PubMed  Article  Google Scholar 

  21. 21

    Romanski, L. M. & LeDoux, J. E. Bilateral destruction of neocortical and perirhinal projection targets of the acoustic thalamus does not disrupt auditory fear conditioning. Neurosci. Lett. 142, 228–232 (1992)

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Zhou, F. M. & Hablitz, J. J. Morphological properties of intracellularly labeled layer I neurons in rat neocortex. J. Comp. Neurol. 376, 198–213 (1996)

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Hestrin, S. & Armstrong, W. E. Morphology and physiology of cortical neurons in layer I. J. Neurosci. 16, 5290–5300 (1996)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Christophe, E. et al. Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J. Neurophysiol. 88, 1318–1327 (2002)

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Chu, Z., Galarreta, M. & Hestrin, S. Synaptic interactions of late-spiking neocortical neurons in layer 1. J. Neurosci. 23, 96–102 (2003)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Margrie, T. W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003)

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Gonchar, Y. & Burkhalter, A. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J. Neurosci. 23, 10904–10912 (2003)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Cauller, L. J., Clancy, B. & Connors, B. W. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390, 297–310 (1998)

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Rubio-Garrido, P., Perez-de-Manzo, F., Porrero, C., Galazo, M. J. & Clasca, F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex 19, 2380–2395 (2009)

    PubMed  Article  Google Scholar 

  30. 30

    Hasselmo, M. E. & Sarter, M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36, 52–73 (2011)

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Wenk, G. L. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol. Learn. Mem. 67, 85–95 (1997)

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Mechawar, N., Cozzari, C. & Descarries, L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J. Comp. Neurol. 428, 305–318 (2000)

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34

    Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F. & Petersen, C. C. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010)

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Kawaguchi, Y. Selective cholinergic modulation of cortical GABAergic cell subtypes. J. Neurophysiol. 78, 1743–1747 (1997)

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Manookin, M. B., Beaudoin, D. L., Ernst, Z. R., Flagel, L. J. & Demb, J. B. Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J. Neurosci. 28, 4136–4150 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007)

    CAS  Article  Google Scholar 

  38. 38

    Wozny, C. & Williams, S. R. Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb. Cortex 21, 1818–1826 (2011)

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Wu, J. & Hablitz, J. J. Cooperative activation of D1 and D2 dopamine receptors enhances a hyperpolarization-activated inward current in layer I interneurons. J. Neurosci. 25, 6322–6328 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Foehring, R. C., van Brederode, J. F., Kinney, G. A. & Spain, W. J. Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J. Neurosci. 22, 8238–8250 (2002)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Couey, J. J. et al. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54, 73–87 (2007)

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Gil, Z., Connors, B. W. & Amitai, Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19, 679–686 (1997)

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Acquas, E., Wilson, C. & Fibiger, H. C. Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J. Neurosci. 16, 3089–3096 (1996)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45

    Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004)

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010)

    ADS  CAS  PubMed  Article  Google Scholar 

  47. 47

    Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


We thank all members of the Lüthi laboratory for discussions and comments. We thank B. Kampa and T. Oertner for advice on two-photon imaging, R. Friedrich and J. Gründemann for comments on the manuscript, P. Argast, J. Lüdke and C. Müller for excellent technical assistance, H. Zielinska for preparation of artwork and S. Arber, Y. Yanagawa and K. Deisseroth for generously sharing materials. This work was supported by grants from the Swiss National Science Foundation (J.J.L. Ambizione; A.L.), the National Competence Center in Research (NCCR) of the Swiss Confederation on the synaptic basis of mental disorders, the French National Research Agency (C.H., ANR-2010-BLAN-1442-01), a Marie-Curie fellowship (J.J.L.), a Schering Foundation fellowship (S.B.E.W.), a Fonds AXA pour la Recherche fellowship (J.C.), the Aquitaine Regional Council (C.H.) and the Novartis Research Foundation.

Author information




J.J.L. initiated the project and performed most experiments and data analyses. S.B.E.W. established optogenetic manipulation. S.B.E.W. and P.T. helped with optogenetic experiments. E.M.M.M. performed and analysed in vitro experiments. P.T. performed and analysed in vivo pharmacology. J.C. and C.H. performed and analysed single-unit recordings. J.J.L. and A.L. conceived the project and wrote the manuscript. All authors contributed to the experimental design and interpretation, and commented on the manuscript.

Corresponding authors

Correspondence to Johannes J. Letzkus or Andreas Lüthi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text relating to figures 1,2, 4 and 5 in the main paper, Supplementary Figures 1-17 with legends and additional references. (PDF 4133 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Letzkus, J., Wolff, S., Meyer, E. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing