Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing

Abstract

Repetitive-element-derived Piwi-interacting RNAs (piRNAs)1,2 act together with Piwi proteins Mili (also known as Piwil2) and Miwi2 (also known as Piwil4) in a genome defence mechanism that initiates transposon silencing via DNA methylation in the mouse male embryonic germ line. This silencing depends on the participation of the Piwi proteins in a slicer-dependent piRNA amplification pathway and is essential for male fertility3,4. A third Piwi family member, Miwi (also known as Piwil1), is expressed in specific postnatal germ cells and associates with a unique set of piRNAs of unknown function5,6,7. Here we show that Miwi is a small RNA-guided RNase (slicer) that requires extensive complementarity for target cleavage in vitro. Disruption of its catalytic activity in mice by a single point mutation causes male infertility, and mutant germ cells show increased accumulation of LINE1 retrotransposon transcripts. We provide evidence for Miwi slicer activity directly cleaving transposon messenger RNAs, offering an explanation for the continued maintenance of repeat-derived piRNAs long after transposon silencing is established in germline stem cells. Furthermore, our study supports a slicer-dependent silencing mechanism that functions without piRNA amplification. Thus, Piwi proteins seem to act in a two-pronged mammalian transposon silencing strategy: one promotes transcriptional repression in the embryo, the other reinforces silencing at the post-transcriptional level after birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Miwi is a slicer requiring extensive complementarity for target cleavage.
Figure 2: Miwi catalytic activity is essential for spermatogenesis.
Figure 3: Primary piRNA biogenesis is globally unaffected in the Miwi ADH mutants and mRNAs are not targeted by piRNAs.
Figure 4: Miwi piRNAs target L1 transposons.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Deep sequencing and microarray data related to this study are deposited with the Gene Expression Omnibus under accession GSE32183.

References

  1. Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Rev. Mol. Cell Biol. 12, 246–258 (2011)

    Article  CAS  Google Scholar 

  2. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet. 10, 94–108 (2009)

    Article  CAS  Google Scholar 

  3. Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008)

    Article  CAS  Google Scholar 

  4. Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917 (2008)

    Article  CAS  Google Scholar 

  5. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002)

    Article  CAS  Google Scholar 

  6. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006)

    Article  ADS  Google Scholar 

  7. Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006)

    Article  CAS  Google Scholar 

  8. Vagin, V. V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23, 1749–1762 (2009)

    Article  CAS  Google Scholar 

  9. Vasileva, A., Tiedau, D., Firooznia, A., Muller-Reichert, T. & Jessberger, R. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 19, 630–639 (2009)

    Article  CAS  Google Scholar 

  10. Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222 (2006)

    Article  CAS  Google Scholar 

  12. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol. 12, 340–349 (2005)

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009)

    Article  CAS  ADS  Google Scholar 

  15. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004)

    Article  CAS  Google Scholar 

  16. Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol. 14, 787–791 (2004)

    Article  CAS  Google Scholar 

  17. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010)

    Article  CAS  ADS  Google Scholar 

  18. Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Caron, C., Govin, J., Rousseaux, S. & Khochbin, S. How to pack the genome for a safe trip. Prog. Mol. Subcell. Biol. 38, 65–89 (2005)

    Article  CAS  Google Scholar 

  20. Lee, K., Haugen, H. S., Clegg, C. H. & Braun, R. E. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc. Natl Acad. Sci. USA 92, 12451–12455 (1995)

    Article  CAS  ADS  Google Scholar 

  21. Kotaja, N. et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc. Natl Acad. Sci. USA 103, 2647–2652 (2006)

    Article  CAS  ADS  Google Scholar 

  22. Lau, N. C. et al. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res. 19, 1776–1785 (2009)

    Article  CAS  Google Scholar 

  23. Branciforte, D. & Martin, S. L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14, 2584–2592 (1994)

    Article  CAS  Google Scholar 

  24. Ahmed, E. A. et al. Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair (Amst.) 6, 1243–1254 (2007)

    Article  CAS  Google Scholar 

  25. Grivna, S. T., Pyhtila, B. & Lin, H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc. Natl Acad. Sci. USA 103, 13415–13420 (2006)

    Article  CAS  ADS  Google Scholar 

  26. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Berninger, P., Jaskiewicz, L., Khorshid, M. & Zavolan, M. Conserved generation of short products at piRNA loci. BMC Genomics 12, 46 (2011)

    Article  CAS  Google Scholar 

  28. Reuter, M. et al. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nature Struct. Mol. Biol. 16, 639–646 (2009)

    Article  CAS  Google Scholar 

  29. Chuma, S. et al. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl Acad. Sci. USA 103, 15894–15899 (2006)

    Article  CAS  ADS  Google Scholar 

  30. Tanaka, T. et al. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc. Natl Acad. Sci. USA 108, 10579–10584 (2011)

    Article  CAS  ADS  Google Scholar 

  31. Brahms, H. et al. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J. Biol. Chem. 275, 17122–17129 (2000)

    Article  CAS  Google Scholar 

  32. Heidaran, M. A., Showman, R. M. & Kistler, W. S. A cytochemical study of the transcriptional and translational regulation of nuclear transition protein 1 (TP1), a major chromosomal protein of mammalian spermatids. J. Cell Biol. 106, 1427–1433 (1988)

    Article  CAS  Google Scholar 

  33. Stanker, L. H., Wyrobek, A. & Balhorn, R. Monoclonal antibodies to human protamines. Hybridoma 6, 293–303 (1987)

    Article  CAS  Google Scholar 

  34. Kotaja, N., Lin, H., Parvinen, M. & Sassone-Corsi, P. Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J. Cell Sci. 119, 2819–2825 (2006)

    Article  CAS  Google Scholar 

  35. Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nature Struct. Mol. Biol. 14, 347–348 (2007)

    Article  CAS  Google Scholar 

  36. Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006)

    Article  ADS  Google Scholar 

  37. Kontgen, F. & Stewart, C. L. Simple screening procedure to detect gene targeting events in embryonic stem cells. Methods Enzymol. 225, 878–890 (1993)

    Article  CAS  Google Scholar 

  38. Farley, F. W., Soriano, P., Steffen, L. S. & Dymecki, S. M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000)

    Article  CAS  Google Scholar 

  39. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995)

    Article  CAS  Google Scholar 

  40. Wen, J. & Brogna, S. Nonsense-mediated mRNA decay. Biochem. Soc. Trans. 36, 514–516 (2008)

    Article  CAS  Google Scholar 

  41. Shoji, M. et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775–787 (2009)

    Article  CAS  Google Scholar 

  42. Karginov, F. V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781–788 (2011)

    Article  Google Scholar 

  43. Pivot-Pajot, C. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell. Biol. 23, 5354–5365 (2003)

    Article  CAS  Google Scholar 

  44. Olson, A. J., Brennecke, J., Aravin, A. A., Hannon, G. J. & Sachidanandam, R. Analysis of large-scale sequencing of small RNAs. Pac. Symp. Biocomput. 126–136 (2008)

  45. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)

    Article  Google Scholar 

  46. Bengtsson, H., Wirapati, P. & Speed, T. P. A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6. Bioinformatics 25, 2149–2156 (2009)

    Article  CAS  Google Scholar 

  47. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, article 3. (2004)

Download references

Acknowledgements

We thank S. Cusack for initial support for the project and discussions. We thank D. O’Carroll and S. Khochbin for help with mouse experiments; J. Xiol and N. Nakatsuji for helpful discussions; D. O'Carroll, S. Martin, S. Kistler and R. Balhorn for antibodies. We thank the Mouse Biology Unit, European Molecular Biology Laboratory (EMBL) Monterotondo and EMBL facilities (Gene, Proteomics, Protein Expression and Purification). This work was supported by a Deutsche Forschungsgemeinschaft (DFG) postdoctoral fellowship to M.R. and grants to R.S.P. from Agence National de la Recherche (ANR) (piRmachines) and the European Union (European Research Council, ERC Starting Grant, pisilence). The R.S.P. laboratory is supported by the EMBL.

Author information

Authors and Affiliations

Authors

Contributions

M.R. performed all biochemical and deep sequencing experiments. S.C., M.R. and M.H. performed imaging. C.F. and C.A. performed electron microscopy analysis. P.B., R.S., R.S.P. and H.S performed bioinformatics analysis. R.S.P., M.R., S.C. and R.S. prepared the manuscript. M.R. and R.S.P. designed research.

Corresponding author

Correspondence to Ramesh S. Pillai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-14 with legends and Supplementary Tables 1-5. (PDF 2408 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, M., Berninger, P., Chuma, S. et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267 (2011). https://doi.org/10.1038/nature10672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10672

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing