Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gravitational detection of a low-mass dark satellite galaxy at cosmological distance

Abstract

The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations1,2,3,4,5 based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard6,7. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found8 using a method based on gravitational lensing9,10, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 108 dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius12 galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be , with an average mass fraction of per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations13,14,15 at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of a dark-matter-dominated satellite galaxy in the gravitational lens system B1938+666 at z = 0.881.

References

  1. Kravtsov, A. Dark matter substructure and dwarf galactic satellites. Adv. Astron. 2010, 281913 (2010)

    Article  ADS  Google Scholar 

  2. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011)

    Article  ADS  Google Scholar 

  6. Boylan-Kolchin, M., Springel, V., White, S. D. M. & Jenkins, A. There’s no place like home? Statistics of Milky Way-mass dark matter haloes. Mon. Not. R. Astron. Soc. 406, 896–912 (2010)

    ADS  Google Scholar 

  7. Busha, M. T. et al. Statistics of satellite galaxies around Milky Way-like hosts. Astrophys. J. (submitted)

  8. Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T. & Gavazzi, R. Detection of a dark substructure through gravitational imaging. Mon. Not. R. Astron. Soc. 408, 1969–1981 (2010)

    Article  ADS  Google Scholar 

  9. Koopmans, L. V. E. Gravitational imaging of cold dark matter substructures. Mon. Not. R. Astron. Soc. 363, 1136–1144 (2005)

    Article  ADS  Google Scholar 

  10. Vegetti, S. & Koopmans, L. V. E. Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies. Mon. Not. R. Astron. Soc. 392, 945–963 (2009)

    Article  ADS  Google Scholar 

  11. King, L. J. et al. A complete infrared Einstein ring in the gravitational lens system B1938 + 666. Mon. Not. R. Astron. Soc. 295, L41–L44 (1998)

    Article  ADS  Google Scholar 

  12. Strigari, L. E. et al. Redefining the missing satellites problem. Astrophys. J. 669, 676–683 (2007)

    Article  ADS  Google Scholar 

  13. Diemand, J., Kuhlen, M. & Madau, P. Dark matter substructure and gamma-ray annihilation in the Milky Way halo. Astrophys. J. 657, 262–270 (2007)

    Article  ADS  Google Scholar 

  14. Diemand, J., Kuhlen, M. & Madau, P. Formation and evolution of galaxy dark matter halos and their substructure. Astrophys. J. 667, 859–877 (2007)

    Article  ADS  Google Scholar 

  15. Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008)

    Article  ADS  Google Scholar 

  16. Riechers, D. A. Molecular gas in lensed z > 2 quasar host galaxies and the star formation law for galaxies with luminous active galactic nuclei. Astrophys. J. 730, 108–123 (2011)

    Article  ADS  Google Scholar 

  17. Tonry, J. L. & Kochanek, C. S. Redshifts of the gravitational lenses MG 1131+0456 and B1938+666. Astrophys. J. 119, 1078–1082 (2000)

    ADS  Google Scholar 

  18. Vegetti, S. & Koopmans, L. V. E. Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function. Mon. Not. R. Astron. Soc. 400, 1583–1592 (2009)

    Article  ADS  Google Scholar 

  19. Xu, D. D. et al. Effects of dark matter substructures on gravitational lensing: results from the Aquarius simulations. Mon. Not. R. Astron. Soc. 398, 1235–1253 (2009)

    Article  ADS  Google Scholar 

  20. Mao, S. & Schneider, P. Evidence for substructure in lens galaxies? Mon. Not. R. Astron. Soc. 295, 587–594 (1998)

    Article  ADS  Google Scholar 

  21. Dalal, N. & Kochanek, C. S. Direct detection of cold dark matter substructure. Astrophys. J. 572, 25–33 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Metcalf, R. B. & Zhao, H. Flux ratios as a probe of dark substructures in quadruple-image gravitational lenses. Astrophys. J. 567, L5–L8 (2002)

    Article  ADS  Google Scholar 

  23. Keeton, C. R., Gaudi, B. S. & Petters, A. O. Identifying lenses with small-scale structure. I. Cusp lenses. Astrophys. J. 598, 138–161 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Walker, M. G. et al. Velocity dispersion profiles of seven dwarf spheroidal galaxies. Astrophys. J. 667, L53–L56 (2007)

    Article  ADS  Google Scholar 

  25. Gilmore, G. et al. The observed properties of dark matter on small spatial scales. Astrophys. J. 663, 948–959 (2007)

    Article  ADS  Google Scholar 

  26. Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Mateo, M. L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Our results are based on observations made with the W. M. Keck Observatory and the Hubble Space Telescope. S.V. is supported by a Pappalardo Fellowship at the Massachusetts Institute of Technology, L.V.E.K. is supported (in part) through an NWO-VIDI program subsidy, and D.J.L. and C.D.F. acknowledge support from the National Science Foundation. The authors are grateful to P. Marshall for comments and feedback.

Author information

Authors and Affiliations

Authors

Contributions

S.V. and L.V.E.K. developed the gravitational imaging technique used for the detection of substructure. S.V. carried out the gravitational lens modelling of the data with help from L.V.E.K. and J.P.M. S.V., L.V.E.K. and J.P.M. wrote the manuscript with comments from all of the authors. C.D.F. was the principal investigator of the observing programme and was responsible, along with D.J.L., for acquiring the data. D.J.L. and M.W.A. reduced the data and performed the galaxy subtraction with help from C.D.F. M.W.A. calculated the systematic error in the substructure mass. C.D.F. calculated the galaxy luminosity.

Corresponding author

Correspondence to S. Vegetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References, Supplementary Tables 1-3 and Supplementary Figures 1-6 with legends. (PDF 436 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vegetti, S., Lagattuta, D., McKean, J. et al. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 481, 341–343 (2012). https://doi.org/10.1038/nature10669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10669

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing