Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle

Abstract

Titan has a methane cycle akin to Earth's water cycle. It has lakes in polar regions1,2, preferentially in the north3; dry low latitudes with fluvial features4,5 and occasional rainstorms6,7; and tropospheric clouds mainly (so far) in southern middle latitudes and polar regions8,9,10,11,12,13,14,15. Previous models have explained the low-latitude dryness as a result of atmospheric methane transport into middle and high latitudes16. Hitherto, no model has explained why lakes are found only in polar regions and preferentially in the north; how low-latitude rainstorms arise; or why clouds cluster in southern middle and high latitudes. Here we report simulations with a three-dimensional atmospheric model coupled to a dynamic surface reservoir of methane. We find that methane is cold-trapped and accumulates in polar regions, preferentially in the north because the northern summer, at aphelion, is longer and has greater net precipitation than the southern summer. The net precipitation in polar regions is balanced in the annual mean by slow along-surface methane transport towards mid-latitudes, and subsequent evaporation. In low latitudes, rare but intense storms occur around the equinoxes, producing enough precipitation to carve surface features. Tropospheric clouds form primarily in middle and high latitudes of the summer hemisphere, which until recently has been the southern hemisphere. We predict that in the northern polar region, prominent clouds will form within about two (Earth) years and lake levels will rise over the next fifteen years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annual cycle of zonal-mean climate statistics in Titan GCM.
Figure 2: Relationship between tropospheric cloudiness and atmospheric circulation in southern summer in Titan GCM.
Figure 3: Annual cycle of tropospheric methane-cloud frequency.

Similar content being viewed by others

References

  1. Stofan, E. et al. The lakes of Titan. Nature 445, 61–64 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Hayes, A. et al. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008)

    Article  ADS  Google Scholar 

  3. Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geosci. 2, 851–854 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Lebreton, J. et al. An overview of the descent and landing of the Huygens probe on Titan. Nature 438, 758–764 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Lorenz, R. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Schaller, E. L., Roe, H. G., Schneider, T. & Brown, M. E. Storms in the tropics of Titan. Nature 460, 873–875 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Turtle, E. P. et al. Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414–1417 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Brown, M. E., Bouchez, A. H. & Griffith, C. A. Direct detection of variable tropospheric clouds near Titan’s south pole. Nature 420, 795–797 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Porco, C. C. et al. Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Griffith, C. A. et al. The evolution of Titan’s mid-latitude clouds. Science 310, 474–477 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Roe, H. G., Bouchez, A. H., Trujillo, C. A., Schaller, E. L. & Brown, M. E. Discovery of temperate latitude clouds on Titan. Astrophys. J. 618, L49–L52 (2005)

    Article  ADS  Google Scholar 

  12. Roe, H. G., Brown, M. E., Schaller, E. L., Bouchez, A. H. & Trujillo, C. A. Geographic control of Titan’s mid-latitude clouds. Science 310, 477–479 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Schaller, E. L., Brown, M. E., Roe, H. G., Bouchez, A. H. & Trujillo, C. A. Dissipation of Titan’s south polar clouds. Icarus 184, 517–523 (2006)

    Article  ADS  Google Scholar 

  14. Brown, M. E., Roberts, J. E. & Schaller, E. L. Clouds on Titan during the Cassini prime mission: A complete analysis of the VIMS data. Icarus 205, 571–580 (2010)

    Article  ADS  Google Scholar 

  15. Turtle, E. P. et al. Seasonal changes in Titan’s meteorology. Geophys. Res. Lett. 38, L03203 (2011)

    Article  ADS  Google Scholar 

  16. Mitchell, J. The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. 113, E08015 (2008)

    ADS  Google Scholar 

  17. Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. W. & Caballero, R. The dynamics behind Titan’s methane clouds. Proc. Natl Acad. Sci. USA 103, 18421–18426 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Mitri, G., Showman, A. P., Lunine, J. I. & Lorenz, R. D. Hydrocarbon lakes on Titan. Icarus 186, 385–394 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Griffith, C. A., McKay, C. P. & Ferri, F. Titan’s tropical storms in an evolving atmosphere. Astrophys. J. 687, L41–L44 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Flasar, F. M., Baines, K. H., Bird, M. K., Tokano, T. & West, R. A. Atmospheric dynamics and meteorology. In Brown, R. H., Lebreton, J. P. & Waite, J. H. (eds) Titan from Cassini-Huygens Chap. 13, 323–352 (Springer, 2009)

    Book  Google Scholar 

  22. Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Penteado, P. F., Griffith, C. A., Greathouse, T. K. & de Bergh, C. Measurements of CH3D and CH4 in Titan from infrared spectroscopy. Astrophys. J. 629, L53–L56 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Tokano, T. et al. Methane drizzle on Titan. Nature 442, 432–435 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Hayes, A. et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus 211, 655–671 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weath. Rev. 115, 3–12 (1987)

    Article  ADS  Google Scholar 

  27. Charney, J. G. A note on large-scale motions in the tropics. J. Atmos. Sci. 20, 607–609 (1963)

    Article  ADS  Google Scholar 

  28. Perron, J. T. et al. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. 111, E11001 (2006)

    Article  ADS  Google Scholar 

  29. Brown, M. E. et al. Discovery of lake-effect clouds on Titan. Geophys. Res. Lett. 36, L01103 (2009)

    ADS  Google Scholar 

  30. Jennings, D. E. et al. Titan’s surface brightness temperatures. Astrophys. J. 691, L103–L105 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support by a NASA Earth and Space Science Fellowship and a David and Lucile Packard Fellowship. We thank I. Eisenman for code for the insolation calculations, and O. Aharonson, A. Hayes and A. Soto for comments on a draft. The simulations were done on the California Institute of Technology’s Division of Geological and Planetary Sciences Dell cluster.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and M.E.B. conceived the study; T.S., S.D.B.G. and E.L.S. developed the GCM; E.L.S. and M.E.B. provided data; and T.S. and S.D.B.G. wrote the paper, with contributions and comments from all authors.

Corresponding author

Correspondence to T. Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-2 with legends and Supplementary References. (PDF 159 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, T., Graves, S., Schaller, E. et al. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481, 58–61 (2012). https://doi.org/10.1038/nature10666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10666

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing