Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic homodyne detection of continuous-variable entangled twin-atom states


Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement1. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution2, the realization of quantum teleportation3,4,5 and quantum memories3,6, or the demonstration of the Einstein–Podolsky–Rosen paradox1,7,8,9. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection10 of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose–Einstein condensate11,12 reveals continuous-variable entanglement, as well as the twin-atom character of the state13. Our results provide a rare example of continuous-variable entanglement of massive particles6,14. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles15.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Analogy to optics and measured population correlations of twin-atom states.
Figure 2: Population of the signal and idler modes.
Figure 3: Atomic homodyning.
Figure 4: Two-mode quadrature fluctuations and mode inseparability.


  1. 1

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Opatrný, T. & Kurizki, G. Matter-wave entanglement and teleportation by molecular dissociation and collisions. Phys. Rev. Lett. 86, 3180–3183 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Reid, M. D. et al. The Einstein-Podolsky-Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein- Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Walls, D. & Milburn, G. Quantum Optics (Springer, 2008)

    Book  Google Scholar 

  11. 11

    Duan, L.-M., Sørensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Pu, H. & Meystre, P. Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose-Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Raymer, M. G., Funk, A. C., Sanders, B. C. & de Guise, H. Separability criterion for separate quantum systems. Phys. Rev. A 67, 052104 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Leslie, S. R. et al. Amplification of fluctuations in a spinor Bose-Einstein condensate. Phys. Rev. A 79, 043631 (2009)

    ADS  Article  Google Scholar 

  17. 17

    Klempt, C. et al. Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Chang, M.-S. et al. Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

    ADS  Article  Google Scholar 

  19. 19

    Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose-Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Caves, C. M. & Schumaker, B. L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068–3092 (1985)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  21. 21

    Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Law, C., Pu, H. & Bigelow, N. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Kronjäger, J., Becker, C., Navez, P., Bongs, K. & Sengstock, K. Magnetically tuned spin dynamics resonance. Phys. Rev. Lett. 97, 110404 (2006)

    ADS  Article  Google Scholar 

  24. 24

    Gerbier, F., Widera, A., Fölling, S., Mandel, O. & Bloch, I. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A 73, 041602 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Diener, R. B. & Ho, T. Quantum spin dynamics of spin-1 Bose gas. Preprint at 〈〉 (2006)

  26. 26

    Ferris, A. J., Olsen, M. K., Cavalcanti, E. G. & Davis, M. J. Detection of continuous variable entanglement without coherent local oscillators. Phys. Rev. A 78, 060104 (2008)

    ADS  Article  Google Scholar 

  27. 27

    Jaskula, J.-C. et al. Sub-Poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010)

    ADS  Article  Google Scholar 

  28. 28

    Bücker, R. et al. Twin-atom beams. Nature Phys. 7, 608–611 (2011)

    ADS  Article  Google Scholar 

  29. 29

    Bookjans, E. M., Hamley, C. D. & Chapman, M. S. Strong quantum spin correlations observed in atomic spin mixing. Preprint at 〈〉 (2011)

  30. 30

    Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science doi:10.1126/science.1208798 (published online 13 October 2011)

Download references


We acknowledge discussions with P. Grangier, A. Aspect, A. J. Ferris, M. J. Davis and B. C. Sanders. This work was supported by the Forschergruppe FOR760, the Deutsche Forschungsgemeinschaft, the German–Israeli Foundation, the Heidelberg Center for Quantum Dynamics, Landesstiftung Baden-Württemberg, the ExtreMe Matter Institute and the European Commission Future and Emerging Technologies Open Scheme project MIDAS (Macroscopic Interference Devices for Atomic and Solid-State Systems). G.K. acknowledges support from the Humboldt-Meitner Award and the Deutsche-Israelische Projektgruppe (DIP).

Author information




N.B.-G. and G.K. contributed to the formulation of the problem. C.G., H.S., E.N., T.Z. and M.K.O. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. K. Oberthaler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-2 with legends and additional references. (PDF 417 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gross, C., Strobel, H., Nicklas, E. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links