Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc


The Messinian salinity crisis1,2 (5.96 to 5.33 million years ago) was caused by reduced water inflow from the Atlantic Ocean to the Mediterranean Sea resulting in widespread salt precipitation and a decrease in Mediterranean sea level of about 1.5 kilometres due to evaporation3. The reduced connectivity between the Atlantic and the Mediterranean at the time of the salinity crisis is thought to have resulted from tectonic uplift of the Gibraltar arc seaway and global sea-level changes, both of which control the inflow of water required to compensate for the hydrological deficit of the Mediterranean1,4. However, the different timescales on which tectonic uplift and changes in sea level occur are difficult to reconcile with the long duration of the shallow connection between the Mediterranean and the Atlantic5 needed to explain the large amount of salt precipitated. Here we use numerical modelling to show that seaway erosion caused by the Atlantic inflow could sustain such a shallow connection between the Atlantic and the Mediterranean by counteracting tectonic uplift. The erosion and uplift rates required are consistent with previous mountain erosion studies, with the present altitude of marine sediments in the Gibraltar arc6,7 and with geodynamic models suggesting a lithospheric slab tear underneath the region8,9,10. The moderate Mediterranean sea-level drawdown during the early stages of the Messinian salinity crisis3,5 can be explained by an uplift of a few millimetres per year counteracted by similar rates of erosion due to Atlantic inflow. Our findings suggest that the competition between uplift and erosion can result in harmonic coupling between erosion and the Mediterranean sea level, providing an alternative mechanism for the cyclicity observed in early salt precipitation deposits and calling into question previous ideas regarding the timing of the events that occurred during the Messinian salinity crisis1.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competition between uplift and erosion along the last corridor connecting the Atlantic and the Mediterranean during stage 1 of the MSC.
Figure 2: Calculated evolution of the reference model resulting from competition between seaway uplift and erosion.
Figure 3: Parameterization of the competition between uplift and erosion.
Figure 4: Geodynamic interpretation of the results invokes the lateral migration of a tearing 8 of the lithospheric slab originally attached to the south Iberian margin.


  1. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Briand, F., ed. The Messinian Salinity Crisis from Mega-Deposits to Microbiology – A Consensus Report (CIESM Workshop Monographs 30, CIESM, 2008)

  3. Hsü, K. J., Ryan, W. B. F. & Cita, M. B. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973)

    Article  ADS  Google Scholar 

  4. Rohling, E. J., Schiebel, R. & Siddall, M. Controls on Messinian Lower Evaporite cycles in the Mediterranean. Earth Planet. Sci. Lett. 275, 165–171 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Gargani, J. & Rigollet, C. Mediterranean sea level variations during the Messinian salinity crisis. Geophys. Res. Lett. 34, L10405 (2007)

    Article  ADS  Google Scholar 

  6. Babault, J., Teixell, A., Arboleya, M. L. & Charroud, M. A late Cenozoic age for long-wavelength surface uplift of the Atlas Mountains of Morocco. Terra Nova 20, 102–107 (2008)

    Article  ADS  Google Scholar 

  7. Iribarren, L., Vergés, J. & Fernàndez, M. Sediment supply from the Betic-Rif orogen to basins through Neogene. Tectonophysics 475, 68–84 (2009)

    Article  ADS  Google Scholar 

  8. Spakman, W. & Wortel, M. J. R. in The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W. et al.) 31–52 (Springer, 2004)

    Book  Google Scholar 

  9. Duggen, S., Hoernie, K., Van den Bogaard, P., Rüpke, L. & Morgan, J. P. Deep roots of the Messinian salinity crisis. Nature 422, 602–606 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Andrews, E. R. & Billen, M. I. Rheologic controls on the dynamics of slab detachment. Tectonophysics 464, 60–69 (2009)

    Article  ADS  Google Scholar 

  11. Clauzon, G., Suc, J.-P., Gautier, F., Berger, A. & Loutre, M.-F. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24, 363–366 (1996)

    Article  ADS  Google Scholar 

  12. Barber, P. M. Messinian subaerial erosion of the proto-Nile Delta. Mar. Geol. 44, 253–272 (1981)

    ADS  Google Scholar 

  13. Clauzon, G. The Messinian Var canyon (Provence, southern France): paleogeographic implications. Mar. Geol. 27, 231–246 (1978)

    Article  ADS  Google Scholar 

  14. Flecker, R. & Ellam, R. M. Identifying late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes. Sedim. Geol. 188–189, 189–203 (2006)

    Article  ADS  Google Scholar 

  15. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E. Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy 4, 231–238 (2007)

    Google Scholar 

  16. Weijermars, R. Neogene tectonics in the Western Mediterranean may have caused the Messinian salinity crisis and an associated glacial event. Tectonophysics 148, 211–219 (1988)

    Article  ADS  Google Scholar 

  17. Comas, M. C., Platt, J. P., Soto, J. I. & Watts, A. B. The origin and tectonic history of the Alboran Basin. Proc. ODP Sci. Res. 161, 555–580 (1999)

    Google Scholar 

  18. Krijgsman, W. Late Neogene evolution of the Taza-Guercif Basin (Rifean Corridor; Morocco) and implications for the Messinian salinity crisis. Mar. Geol. 153, 147–160 (1999)

    Article  ADS  Google Scholar 

  19. Garcés, M., Krijgsman, W. & Agustí, J. Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics. Earth Planet. Sci. Lett. 163, 69–81 (1998)

    Article  ADS  Google Scholar 

  20. Govers, R. Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology 37, 167–170 (2009)

    Article  ADS  Google Scholar 

  21. Meijer, P., Th & Krijgsman, W. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 240, 510–520 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Blanc, P.-L. Improved modelling of the Messinian Salinity Crisis and conceptual implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 349–372 (2006)

    Article  Google Scholar 

  23. Rouchy, J.-M. & Saint Martin, J. P. Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations. Geology 20, 629–632 (1992)

    Article  ADS  Google Scholar 

  24. Ryan, W. B. F. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009)

    Article  ADS  Google Scholar 

  25. Blanc, P.-L. The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodin. Acta 15, 303–317 (2002)

    Article  ADS  Google Scholar 

  26. Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian Crisis. Nature 462, 778–781 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Gladstone, R., Flecker, R., Valdes, P., Lunt, D. & Markwick, P. The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 254–267 (2007)

    Article  Google Scholar 

  28. Just, J., Hübscher, C., Betzler, C., Lüdmann, T. & Reicherter, K. Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis. Geo-Mar. Lett. 31, 51–64 (2011)

    Article  ADS  Google Scholar 

  29. Gerya, T. V., Yuen, D. A. & Maresch, W. V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101–116 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Villaseñor, A., Spakman, W. & Engdahl, E. R. Influence of regional travel times in global tomographic models. Geophys. Res. Abstr. 5, abstr. EAE03-A-08614. (2003)

  31. Aharon, P., Goldstein, S. L., Wheeler, C. W. & Jacobson, G. Sea-level events in the South Pacific linked with the Messinian salinity crisis. Geology 21, 771–775 (1993)

    Article  ADS  CAS  Google Scholar 

  32. Schneck, R., Micheels, A. & Mosbrugger, V. Climate modelling sensitivity experiments for the Messinian Salinity Crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 149–163 (2010)

    Article  Google Scholar 

  33. Fauquette, S. et al. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 281–301 (2006)

    Article  Google Scholar 

  34. Attal, M. et al. Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy. J. Geophys. Res. 116, F02005 (2011)

    Article  ADS  Google Scholar 

  35. Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model; implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. B 104, 17661–17674 (1999)

    Article  ADS  Google Scholar 

  36. Lavé, J. & Avouac, J. P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. 106, 26561–26591 (2001)

    Article  ADS  Google Scholar 

  37. Wobus, C. W. Heimsath, A. M., Whipple, K. X. & Hodges, K. V. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005)

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Elliot, W. J., Liebenow, A. M., Laflen, J. M. & Kohl, K. D. A Compendium of Soil Erodibility Data from WEPP Cropland Soil Field Erodibility Experiments 1987 & 88. NSERL Report 3 (Ohio State Univ. and USDA Agricultural Research Service, National Soil Erosion Research Laboratory, 1989)

    Google Scholar 

  39. Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A. & Roberts, G. P. Modeling fluvial incision and transient landscape evolution: influence of dynamic channel adjustment. J. Geophys. Res. 113, F03013 (2008)

    Article  ADS  Google Scholar 

  40. Whipple, K. X. & Hancock, G. S. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation. Geol. Soc. Am. Bull. 112, 490 (2000)

    Article  ADS  Google Scholar 

  41. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004)

    Article  ADS  CAS  Google Scholar 

  42. Turowski, J. M., Lague, D. & Hovius, N. Cover effect in bedrock abrasion: a new derivation and its implications for the modelling of bedrock channel morphology. J. Geophys. Res. 112, F04006 (2007)

    Article  ADS  Google Scholar 

  43. Meijer, P., Th, Slingerland, R. & Wortel, M. J. R. Tectonic control on past circulation of the Mediterranean Sea: a model study of the late Miocene. Paleoceanography 19, PA1026 (2004)

    Article  ADS  Google Scholar 

  44. Bryden, H. L. & Stommel, H. M. Limiting processes that determine basic features of the circulation in the Mediterranean Sea. Oceanol. Acta 7, 289–296 (1984)

    Google Scholar 

  45. de Lange, G. J. & Krijgsman, W. Messinian salinity crisis: a novel unifying shallow gypsum/deep dolomite formation mechanism. Mar. Geol. 275, 273–277 (2010)

    Article  ADS  CAS  Google Scholar 

Download references


We thank P. Meijer, S. Giralt, L. Matenco and C. Ayora for comments and criticisms on earlier versions of the manuscript. This work was funded by the Spanish government through the projects ATIZA (CGL2009-09662), TopoAtlas (CGL2006-05493), TopoMed (CGL2008-03474-E/BTE) and TopoIberia (CSD2006-00041).

Author information

Authors and Affiliations



D.G.-C. planned the study, performed the modelling and wrote the paper; A.V. processed and interpreted the seismic data and tomography; and both authors interpreted and discussed the results.

Corresponding author

Correspondence to D. Garcia-Castellanos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The source code developed for the calculations can be downloaded from

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary References and Supplementary Figures 1-4 with legends. (PDF 2548 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcia-Castellanos, D., Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing