Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Additive threats from pathogens, climate and land-use change for global amphibian diversity

Abstract

Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature1,2,3. The causes of these declines are a matter of continued research, but probably include climate change, land-use change and spread of the pathogenic fungal disease chytridiomycosis1,4,5. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas are disproportionately more affected by one or multiple threat factors than areas with low richness. Amphibian declines are likely to accelerate in the twenty-first century, because multiple drivers of extinction could jeopardize their populations more than previous, mono-causal, assessments have suggested.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Current amphibian species richness and the intensity of three factors threatening global amphibian diversity projected for the year 2080.
Figure 2: Relationships among the intensities of the three main factors threatening global amphibian diversity.
Figure 3: Spatial distribution and pairwise overlap of the three main factors threatening global amphibian biodiversity, projected for the year 2080.
Figure 4: Spatial overlap between areas with the highest amphibian species richness and the main factors threatening global amphibian diversity, projected for 2080.

References

  1. 1

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004)

    ADS  CAS  Article  Google Scholar 

  2. 2

    IUCN. An Analysis of Amphibians on the 2008 IUCN Red List 〈http://www.iucnredlist.org/initiatives/amphibians〉 (2008)

  3. 3

    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002)

    Article  Google Scholar 

  5. 5

    Beebee, T. J. C. & Griffiths, R. A. The amphibian decline crisis: a watershed for conservation biology? Biol. Conserv. 125, 271–285 (2005)

    Article  Google Scholar 

  6. 6

    Houlahan, J. E., Findlay, C. S., Schmidt, B. R., Meyer, A. H. & Kuzmin, S. L. Quantitative evidence for global amphibian population declines. Nature 404, 752–755 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proc. R. Soc. Lond. B 274, 253–260 (2007)

    Article  Google Scholar 

  9. 9

    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Lips, K. R., Diffendorfer, J., Mendelson, J. R. & Sears, M. W. Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008)

    Article  Google Scholar 

  11. 11

    Lawler, J. J., Shafer, S. L. & Blaustein, A. R. Projected climate impacts for the amphibians of the Western Hemisphere. Conserv. Biol. 24, 38–50 (2010)

    Article  Google Scholar 

  12. 12

    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006)

    Article  Google Scholar 

  13. 13

    Bielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conservation Letters 1, 82–90 (2008)

    Article  Google Scholar 

  14. 14

    Sodhi, N. S. et al. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3, e1636 (2008)

    ADS  Article  Google Scholar 

  15. 15

    Becker, C. G. & Zamudio, K. R. Tropical amphibian populations experience higher disease risk in natural habitats. Proc. Natl Acad. Sci. USA 108, 9893–9898 (2011)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. USA 105, 17436–17441 (2008)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Rödder, D., Kielgast, J. & Lötters, S. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Dis. Aquat. Organ. 92, 201–207 (2010)

    Article  Google Scholar 

  18. 18

    van Vuuren, D. P., Sala, O. E. & Pereira, H. M. The future of vascular plant diversity under four global scenarios. Ecol. Soc. 11, 25 (2006)

    Article  Google Scholar 

  19. 19

    Alcamo, J. et al. Global Change Scenarios of the 21st Century, Results from the IMAGE 2.1 Model 3–96 (Elsevier, 1998)

  20. 20

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Scenarios. (Island, 2005)

  21. 21

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Divers. Distrib. 9, 141–150 (2003)

    Article  Google Scholar 

  22. 22

    Kilpatrick, A. M., Briggs, C. J. & Daszak, P. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol. Evol. 25, 109–118 (2010)

    Article  Google Scholar 

  23. 23

    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010)

    Google Scholar 

  24. 24

    Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, R. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011)

    ADS  Article  Google Scholar 

  25. 25

    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010)

    Google Scholar 

  26. 26

    Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in spawning date between populations of common frog reveal local adaptation. Proc. Natl Acad. Sci. USA 107, 8292–8297 (2010)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007)

    Article  Google Scholar 

  28. 28

    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl Acad. Sci. USA 108, 2306–2311 (2011)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007)

    Article  Google Scholar 

  30. 30

    Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007)

    ADS  Article  Google Scholar 

  31. 31

    IUCN. Global Amphibian Assessment 〈http://www.iucnredlist.org/initiatives/amphibians/〉 (2004)

  32. 32

    IPCC. Special Report on Emissions Scenarios, Prepared for the Third Assessment Report (IPCC, 2000)

  33. 33

    IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers (IPCC, 2007)

  34. 34

    Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003)

    Article  Google Scholar 

  35. 35

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008)

    Article  Google Scholar 

  36. 36

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island, 2005)

  38. 38

    Farber, O. & Kadmon, R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Modell. 160, 115–130 (2003)

    CAS  Article  Google Scholar 

  39. 39

    Bioensembles:. software for computer intensive ensemble forecasting of species distributions under climate change v. 1.0 (privately distributed, Madrid, Goiás, Évora, 2009)

  40. 40

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006)

    Article  Google Scholar 

  41. 41

    Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008)

    Article  Google Scholar 

  42. 42

    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005)

    ADS  Article  Google Scholar 

  43. 43

    Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005)

    Article  Google Scholar 

  44. 44

    Stockwell, D. R. B. & Peterson, A. T. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148, 1–13 (2002)

    Article  Google Scholar 

  45. 45

    McPherson, J. M., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004)

    Article  Google Scholar 

  46. 46

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008)

    Article  Google Scholar 

  47. 47

    Nenzén, H. K. & Araújo, M. B. Choice of threshold alters projections of species range shifts under climate change. Ecol. Modell. 222, 3346–3354 (2011)

    Article  Google Scholar 

  48. 48

    Araújo, M. B., Alagador, D., Cabeza, M., Nogues-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011)

    Article  Google Scholar 

  49. 49

    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005)

    Article  Google Scholar 

  50. 50

    Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006)

    Article  Google Scholar 

  51. 51

    Diniz-Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Rödder, S. Lötters and J. Kielgast for the provision of data and B. dendrobatidis modelling results. We thank C. Graham, R. Colwell, N. Sanders, H. H. Bruun and S. Fritz for comments on previous versions of the manuscript. Special thanks to T. Rangel for technical and statistical support. C.H., M.B.A. and C.R. acknowledge the Danish National Research Foundation for support to the Center for Macroecology, Evolution and Climate; research by M.B.A. was funded by the Portuguese Foundation for Science and Technology (PTDC/AAC-AMB/98163/2008); W.J. acknowledges support from NSF grants DBI 0960550 and DEB 1026764.

Author information

Affiliations

Authors

Contributions

C.H., M.B.A. and C.R. designed the study, C.H. performed all analyses, all authors discussed the results. C.H. wrote the paper, with substantial contributions from all authors.

Corresponding author

Correspondence to Christian Hof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Discussion, Supplementary Tables 1-2, Supplementary Figures 1-14 with legends and additional references. (PDF 8972 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hof, C., Araújo, M., Jetz, W. et al. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011). https://doi.org/10.1038/nature10650

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing