Abstract
Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system1,2, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models1,3: double-degenerate (involving two white dwarfs in a close binary system2,4) and single-degenerate models5,6. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy7. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10–100 times fainter than previous limits on other type Ia supernova progenitor systems8,9,10, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A radio-detected type Ia supernova with helium-rich circumstellar material
Nature Open Access 17 May 2023
-
Astronomical Distance Determination in the Space Age
Space Science Reviews Open Access 23 January 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Nomoto, K. Accreting white dwarf models for type I supernovae. I—Presupernova evolution and triggering mechanisms. Astrophys. J. 253, 798–810 (1982)
Iben, I., Jr & Tutukov, A. V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys. J. Suppl. Ser. 54, 335–372 (1984)
Whelan, J. & Iben, I., Jr Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973)
Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984)
Nomoto, K., Iwamoto, K. & Kishimoto, N. Type Ia supernovae: their origin and possible applications in cosmology. Science 276, 1378–1382 (1997)
Podsiadlowski, P., Mazzali, P., Lesaffre, P., Han, Z. & Förster, F. The nuclear diversity of type Ia supernova explosions. N. Astron. Rev. 52, 381–385 (2008)
Nugent, P. et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Naturehttp://dx.doi.org/10.1038/nature10644 (this issue).
Maoz, D. & Mannucci, F. A search for the progenitors of two type Ia supernovae in NGC 1316. Mon. Not. R. Astron. Soc. 388, 421–428 (2008)
Nelemans, G., Voss, R., Roelofs, G. & Bassa, C. Limits on the X-ray and optical luminosity of the progenitor of the type Ia supernova 2007sr. Mon. Not. R. Astron. Soc. 388, 487–494 (2008)
Voss, R. & Nelemans, G. Discovery of the progenitor of the type Ia supernova 2007on. Nature 451, 802–804 (2008)
Munari, U. & Renzini, A. Are symbiotic stars the precursors of type Ia supernovae? Astrophys. J. 397, L87–L90 (1992)
van den Heuvel, E. P. J., Bhattacharya, D., Nomoto, K. & Rappaport, S. A. Accreting white dwarf models for CAL 83, CAL 87, and other ultrasoft X-ray sources in the LMC. Astron. Astrophys. 262, 97–105 (1992)
Liu, W.-M., Chen, W.-C., Wang, B. & Han, Z. W. Helium-star evolutionary channel to super-Chandrasekhar mass type Ia supernovae. Astron. Astrophys. 523, A3 (2010)
Yoon, S.-C. & Langer, N. The first binary star evolution model producing a Chandrasekhar mass white dwarf. Astron. Astrophys. 412, L53–L56 (2003)
Wizinowich, P. L. et al. The W. M. Keck Observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pacif. 118, 297–309 (2006)
Hachisu, I. & Kato, M. Recurrent novae as a progenitor system of type Ia supernovae. I. RS Ophiuchi subclass: systems with a red giant companion. Astrophys. J. 558, 323–350 (2001)
Woudt, P. A. et al. The expanding bipolar shell of the helium nova V445 Puppis. Astrophys. J. 706, 738–746 (2009)
Thoroughgood, T. D., Dhillon, V. S., Littlefair, S. P., Marsh, T. R. & Smith, D. A. The mass of the white dwarf in the recurrent nova U Scorpii. Mon. Not. R. Astron. Soc. 327, 1323–1333 (2001)
Schaefer, B. E. Comprehensive photometric histories of all known Galactic recurrent novae. Astrophys. J. Suppl. Ser. 187, 275–373 (2010)
Greiner, J. Catalog of supersoft X-ray sources. N. Astron. 5, 137–141 (2000)
Di Stefano, R. The progenitors of type Ia supernovae. I. Are they supersoft sources? Astrophys. J. 712, 728–733 (2010)
Di Stefano, R. The progenitors of type Ia supernovae. II. Are they double-degenerate binaries? The symbiotic channel. Astrophys. J. 719, 474–482 (2010)
Yoon, S.-C., Podsiadlowski, P. & Rosswog, S. Remnant evolution after a carbon-oxygen white dwarf merger. Mon. Not. R. Astron. Soc. 380, 933–948 (2007)
Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Preprint at http://arxiv.org/abs/1108.4036 (2011)
Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J. 708, 1025–1031 (2010)
Fryer, C. L. et al. Spectra of type Ia supernovae from double degenerate mergers. Astrophys. J. 725, 296–308 (2010)
Stetson, P. B. et al. The extragalactic distance scale key project. XVI. Cepheid variables in an inner field of M101. Astrophys. J. 508, 491–517 (1998)
Shappee, B. J. & Stanek, K. Z. A new Cepheid distance to the giant spiral M101 based on image subtraction of Hubble Space Telescope/Advanced Camera for Surveys observations. Astrophys. J. 733, 124–148 (2011)
Hachisu, I., Kato, M., Nomoto, K. & Umeda, H. A new evolutionary path to type Ia supernovae: a helium-rich supersoft x-ray source channel. Astrophys. J. 519, 314–323 (1999)
Torres, G. On the use of empirical bolometric corrections for stars. Astron. J. 140, 1158–1162 (2010)
Acknowledgements
We thank D. Maoz and S. Starrfield for comments, and the staff of the W. M. Keck Observatory, especially J. Lyke and R. Campbell, for their assistance in obtaining the NIRC adaptive optics imaging. P.P. acknowledges discussions on symbiotic binaries with J. Mikolajewska. M.M.K. acknowledges support by NASA’s Hubble Fellowship and the Carnegie-Princeton Fellowship. J.S.B.’s group was partially supported by NASA. J.S.B., A.V.F., L.B. and S.W.J. acknowledge support from the US National Science Foundation. A.V.F.’s group at UC Berkeley, and the Katzman Automatic Imaging Telescope (KAIT) and its ongoing operation, have received financial assistance from NASA, Gary and Cynthia Bengier, the Richard & Rhoda Goldman Fund, the Sylvia and Jim Katzman Foundation, and the TABASGO Foundation. E.O.O. is supported by an Einstein Fellowship from NASA. M.M.S. and J.B. acknowledge the support of Hilary Lipsitz and the American Museum of Natural History for essential funding. M.S. acknowledges support from the Royal Society. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Observations were obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, La Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. The National Energy Research Scientific Computing Center, provided staff, computational resources, and data storage for this project.
Author information
Authors and Affiliations
Contributions
W.L., J.S.B., S.W.J., C.M. and B.P. analysed the Hubble Space Telescope photometry in the context of progenitor limits. P.P. contributed the analysis of progenitor models. A.A.M., J.W.R. and S.B.C. analysed historical imaging from the Palomar Transient Factory (PTF) and KAIT in the context of nova limits. M.M.K. and K.J.S. provided the analysis of Spitzer observations. M.M.S. and J.B. provided analysis of the Hubble Space Telescope imaging. M.M.S. also contributed interpretation of the progenitor limits. N.R.B., E.O.O. and L.B. contributed analysis and interpretation of the historical X-ray imaging. D.P., R.M.Q., S.R.K., N.M.L., E.O.O., S.B.C., M.S., D.A.H., J.S.B., P.E.N., M.M.K., L.B. and K.M. were responsible for obtaining, reducing, and analysing the PTF observations. A.S. and H.-Y.S. obtained the Keck adaptive optics imaging and S.B.C. reduced and analysed those images. A.V.F., M.G., W.L. and J.M.S. were responsible for the KAIT imaging and analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains Supplementary Text and Data, Supplementary Tables 1-5, Supplementary Figures 1-4 and additional references. (PDF 1907 kb)
PowerPoint slides
Rights and permissions
About this article
Cite this article
Li, W., Bloom, J., Podsiadlowski, P. et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348–350 (2011). https://doi.org/10.1038/nature10646
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10646
This article is cited by
-
A radio-detected type Ia supernova with helium-rich circumstellar material
Nature (2023)
-
Observations of galactic and extragalactic novae
The Astronomy and Astrophysics Review (2020)
-
Observational properties of thermonuclear supernovae
Nature Astronomy (2019)
-
Astronomical Distance Determination in the Space Age
Space Science Reviews (2018)
-
Single Degenerate Models for Type Ia Supernovae: Progenitor’s Evolution and Nucleosynthesis Yields
Space Science Reviews (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.