Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of full-length Drosophila cryptochrome

A Corrigendum to this article was published on 20 March 2013

Abstract

The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life1,2,3,4,5. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks1,2,3,4,5. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism3,6. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function7,8,9,10,11,12. Here, we report a 2.3-Å resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp 536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: dCRY resembles 6-4 PL with the C-terminal tail replacing the DNA substrate.
Figure 2: Structural motifs that define Type 1 CRYs.
Figure 3: Cofactor binding regions of dCRY.
Figure 4: Redox active groups and conformations in dCRY.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates for the reported crystal structures have been deposited with the Protein Data Bank under accession code 3TVS.

References

  1. 1

    Cashmore, A. R. Cryptochromes: enabling plants and animals to determine circadian time. Cell 114, 537–543 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Sancar, A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2238 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Partch, C. L. & Sancar, A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem. Photobiol. 81, 1291–1304 (2005)

    CAS  Article  Google Scholar 

  4. 4

    Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086 (2009)

    Article  Google Scholar 

  6. 6

    Hitomi, K. et al. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc. Natl Acad. Sci. USA 106, 6962–6967 (2009)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304, 1503–1506 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Dissel, S. et al. A constitutively active cryptochrome in Drosophila melanogaster. Nature Neurosci. 7, 834–840 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Hemsley, M. J. et al. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531–537 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Rosato, E. et al. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Biol. 11, 909–917 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Partch, C. L., Clarkson, M. W., Ozgur, S., Lee, A. L. & Sancar, A. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 44, 3795–3805 (2005)

    CAS  Article  Google Scholar 

  12. 12

    van der Schalie, E. A., Conte, F. E., Marz, K. E. & Green, C. B. Structure/function analysis of Xenopus cryptochromes 1 and 2 reveals differential nuclear localization mechanisms and functional domains important for interaction with and repression of CLOCK-BMAL1. Mol. Cell. Biol. 27, 2120–2129 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Ozturk, N., Song, S. H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008)

    Article  Google Scholar 

  14. 14

    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007)

    CAS  Article  Google Scholar 

  15. 15

    Griffin, E. A., Jr, Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Koh, K., Zheng, X. Z. & Sehgal, A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312, 1809–1812 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Peschel, N., Chen, K. F., Szabo, G. & Stanewsky, R. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 19, 241–247 (2009)

    CAS  Article  Google Scholar 

  18. 18

    Ozturk, N., Selby, C. P., Annayev, Y., Zhong, D. & Sancar, A. Reaction mechanism of Drosophila cryptochrome. Proc. Natl Acad. Sci. USA 108, 516–521 (2011)

    ADS  CAS  Article  Google Scholar 

  19. 19

    VanVickle-Chavez, S. J. & Van Gelder, R. N. Action spectrum of Drosophila cryptochrome. J. Biol. Chem. 282, 10561–10566 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Hoang, N. et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 6, e160 (2008)

    Article  Google Scholar 

  21. 21

    Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282, 13011–13021 (2007)

    CAS  Article  Google Scholar 

  22. 22

    Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Maul, M. J. et al. Crystal structure and mechanism of a DNA (6-4) photolyase. Angew. Chem. Int. Edn Engl. 47, 10076–10080 (2008)

    CAS  Article  Google Scholar 

  24. 24

    Kao, Y. T. et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 130, 7695–7701 (2008)

    CAS  Article  Google Scholar 

  25. 25

    Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Senda, T., Senda, M., Kimura, S. & Ishida, T. Redox control of protein conformation in flavoproteins. Antioxid. Redox Signal. 11, 1741–1766 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Rohr, A. K., Hersleth, H. P. & Andersson, K. K. Tracking flavin conformations in protein crystal structures with Raman spectroscopy and QM/MM calculations. Angew. Chem. Int. Ed. 49, 2324–2327 (2010)

    Article  Google Scholar 

  28. 28

    Schleicher, E. et al. Electron nuclear double resonance differentiates complementary roles for active site histidines in (6-4) photolyase. J. Biol. Chem. 282, 4738–4747 (2007)

    CAS  Article  Google Scholar 

  29. 29

    Tang, C. H. A., Hinteregger, E., Shang, Y. H. & Rosbash, M. Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. Neuron 66, 378–385 (2010)

    CAS  Article  Google Scholar 

  30. 30

    Fogle, K. J., Parson, K. G., Dahm, N. A. & Holmes, T. C. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331, 1409–1413 (2011)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Bilwes, A. M., Quezada, C. M., Croal, L. R., Crane, B. R. & Simon, M. I. Nucleotide binding by the histidine kinase CheA. Nature Struct. Biol. 8, 353–360 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grant GM079679 to B.R.C. and GM054339 to M.W.Y. We thank the NE-CAT at the Advanced Photon Source of Argonne Laboratories for access to data collection facilities. We are indebted to C. Kemp for insect cell expression of dCRY and C. Manahan, X. Xu and W. Horne for their help with the ITC experiments.

Author information

Affiliations

Authors

Contributions

B.R.C., B.D.Z., A.T.V., D.T. and M.W.Y. designed the project. J.W. cloned, expressed and purified dCRY, B.D.Z. and A.T.V. purified and crystallized dCRY and collected diffraction data. B.D.Z. and B.R.C. determined the structure. D.T. and M.W.Y. performed CRY stability studies. A.T.V. performed ITC experiments. B.D.Z. and B.R.C. wrote the manuscript and all authors provided editorial input.

Corresponding author

Correspondence to Brian R. Crane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-12 with legends, Supplementary Tables 1-2, Supplementary Materials and Methods and additional references (see contents for details). (PDF 1718 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zoltowski, B., Vaidya, A., Top, D. et al. Structure of full-length Drosophila cryptochrome. Nature 480, 396–399 (2011). https://doi.org/10.1038/nature10618

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing