When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star’s radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this1,2. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected ‘mixed modes’3,4. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior1,5,6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & Rotation of horizontal-branch stars in globular clusters. Astrophys. J. 540, 489–503 (2000)

  2. 2.

    & Meridional circulation and CNO anomalies in red giant stars. Astrophys. J. 229, 624–641 (1979)

  3. 3.

    et al. Kepler detected gravity-mode period spacings in a red giant star. Science 332, 205 (2011)

  4. 4.

    et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011)

  5. 5.

    Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

  6. 6.

    et al. Effects of rotation on the evolution and asteroseismic properties of red giants. Astron. Astrophys. 509, A72 (2010)

  7. 7.

    , & Asteroseismology Ch. 3 (Springer-Verlag, 2010)

  8. 8.

    et al. Non-radial oscillation modes with long lifetimes in giant stars. Nature 459, 398–400 (2009)

  9. 9.

    et al. Oscillations of α UMa and other red giants. Mon. Not. R. Astron. Soc. 328, 601–610 (2001)

  10. 10.

    Physics of solar-like oscillations. Sol. Phys. 220, 137–168 (2004)

  11. 11.

    et al. Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants. Astron. Astrophys. 506, 57–67 (2009)

  12. 12.

    , , , & Seismic diagnostics of red giants: first comparison with stellar models. Astrophys. J. 721, L182–L188 (2010)

  13. 13.

    et al. The universal red-giant oscillation pattern. An automated determination with CoRoT data. Astron. Astrophys. 525, L9 (2011)

  14. 14.

    et al. Asteroseismology of red giants from the first four months of Kepler data: fundamental stellar parameters. Astron. Astrophys. 522, A1 (2010)

  15. 15.

    et al. Tracking solar gravity modes: the dynamics of the solar core. Science 316, 1591–1593 (2007)

  16. 16.

    et al. Slow rotation of the Sun's interior. Nature 376, 669–672 (1995)

  17. 17.

    et al. Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. R. Astron. Soc. 308, 405–414 (1999)

  18. 18.

    et al. The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003)

  19. 19.

    et al. Asteroseismology of HD 129929: core overshooting and nonrigid rotation. Science 300, 1926–1928 (2003)

  20. 20.

    et al. Asteroseismology of the β Cephei star ν Eridani: interpretation and applications of the oscillation spectrum. Mon. Not. R. Astron. Soc. 350, 1022–1028 (2004)

  21. 21.

    , & Prospects for measuring differential rotation in white dwarfs through asteroseismology. Astrophys. J. 516, 349–365 (1999)

  22. 22.

    et al. Solar-like oscillations in low-luminosity red giants: first results from Kepler. Astrophys. J. Lett. 713, L176–L181 (2010)

  23. 23.

    et al. Preparation of Kepler light curves for asteroseismic analyses. Mon. Not. R. Astron. Soc. 414, L6–L10 (2011)

  24. 24.

    The nonradial oscillations of gaseous stars and the problem of beta Canis Majoris. Astrophys. J. 114, 373–384 (1951)

Download references


We acknowledge the work of the team behind Kepler. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. P.G.B. and C.A. were supported by the European Community’s Seventh Framework Programme (ERC grant PROSPERITY); J.D.R. and T.K. were supported by the Fund for Scientific Research, Flanders. S.H. was supported by the Netherlands Organisation for Scientific Research. J.M. and M.V. were supported by the Belgian Science Policy Office. The work is partly based on observations with the High Efficiency and Resolution Mercator Echelle Spectrograph at the Mercator Telescope, which is operated at La Palma in Spain by the Flemish Community.

Author information


  1. Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, 3001 Leuven, Belgium

    • Paul G. Beck
    • , Thomas Kallinger
    • , Joris De Ridder
    • , Conny Aerts
    • , Fabien Carrier
    •  & Michel Hillen
  2. Institut d’Astrophysique et de Géophysique de l’Université de Liège, 4000 Liège, Belgium

    • Josefina Montalban
    • , Marc-Antoine Dupret
    •  & Marica Valentini
  3. Institut für Astronomie der Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria

    • Thomas Kallinger
  4. Afdeling Sterrenkunde, Institute for Mathematics Astrophysics and Particle Physics (IMAPP), Radboud University Nijmegen, 6500GL Nijmegen, The Netherlands

    • Conny Aerts
  5. Laboratoire Astrophysique, Instrumentation et Modélisation (AIM), CEA/DSM—CNRS—Université Paris Diderot; Institut de Recherche sur les lois Fondamentales de l'Univers/Service d’Astrophysique (IRFU/Sap), Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France

    • Rafael A. García
  6. Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

    • Saskia Hekker
  7. School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

    • Saskia Hekker
    • , Yvonne Elsworth
    •  & Andrea Miglio
  8. Laboratoire d’études spatiales et d’instrumentation (LESIA), CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195 Meudon Cedex, France

    • Benoit Mosser
  9. Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland

    • Patrick Eggenberger
  10. Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney 2006, Australia

    • Dennis Stello
    •  & Timothy R. Bedding
  11. Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

    • Søren Frandsen
    • , Jørgen Christensen-Dalsgaard
    •  & Hans Kjeldsen
  12. Department of Astronomy and Physics, Saint Marys University, Halifax, NS B3H 3C3, Canada

    • Michael Gruberbauer
  13. Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, 94035 California, USA

    • Forrest R. Girouard
    • , Jennifer R. Hall
    •  & Khadeejah A. Ibrahim


  1. Search for Paul G. Beck in:

  2. Search for Josefina Montalban in:

  3. Search for Thomas Kallinger in:

  4. Search for Joris De Ridder in:

  5. Search for Conny Aerts in:

  6. Search for Rafael A. García in:

  7. Search for Saskia Hekker in:

  8. Search for Marc-Antoine Dupret in:

  9. Search for Benoit Mosser in:

  10. Search for Patrick Eggenberger in:

  11. Search for Dennis Stello in:

  12. Search for Yvonne Elsworth in:

  13. Search for Søren Frandsen in:

  14. Search for Fabien Carrier in:

  15. Search for Michel Hillen in:

  16. Search for Michael Gruberbauer in:

  17. Search for Jørgen Christensen-Dalsgaard in:

  18. Search for Andrea Miglio in:

  19. Search for Marica Valentini in:

  20. Search for Timothy R. Bedding in:

  21. Search for Hans Kjeldsen in:

  22. Search for Forrest R. Girouard in:

  23. Search for Jennifer R. Hall in:

  24. Search for Khadeejah A. Ibrahim in:


P.G.B., T.K., J.D.R., C.A., R.A.G., S.H., B.M., Y.E., S.F., F.C. and M.G. measured the mode parameters, and derived and interpreted the rotational splitting and period spacings. J.M., M.-A.D., P.E., J.C.-D. and A.M. calculated stellar models and provided theoretical interpretation of the rotational splitting. M.H. and M.V. observed and analysed the spectra. J.D.R., S.H., S.F., Y.E., D.S., T.R.B., H.K., F.R.G., J.R.H. and K.A.I. contributed to the coordination of the project, including the acquisition and distribution of the data. C.A. defined and supervised the research. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Paul G. Beck.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Notes and Data , Supplementary References, Supplementary Tables 1-2 and Supplementary Figures 1-11 with legends.

About this article

Publication history





Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.