• A Corrigendum to this article was published on 01 February 2012


Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae1. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium2. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy3.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006)

  2. 2.

    & Gamma-ray bursts: progress, problems and prospects. Int. J. Mod. Phys. A 19, 2385–2472 (2004)

  3. 3.

    et al. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star. Nature doi:10.1038/nature10592 (this issue).

  4. 4.

    et al. The second Swift Burst Alert Telescope gamma-ray burst catalog. Astrophys. J. Suppl. Ser. 195, 2 (2011)

  5. 5.

    et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993)

  6. 6.

    GRB 101225A. GCN Circ. 11550, (2011)

  7. 7.

    , & Early EVLA observations of Christmas burst. GCN Circ. 11770, (2011)

  8. 8.

    et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998)

  9. 9.

    et al. An HST study of the supernovae accompanying GRB 040924 and GRB 041006. Astrophys. J. 636, 391–399 (2006)

  10. 10.

    et al. Spectroscopy and multiband photometry of the afterglow of intermediate duration γ-ray burst GRB 040924 and its host galaxy. Astron. Astrophys. 481, 319–326 (2008)

  11. 11.

    et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophys. J. 720, 1513–1558 (2010)

  12. 12.

    et al. The nature of the dwarf starforming galaxy associated with GRB 060218/SN 2006aj. Astron. Astrophys. 464, 529–539 (2007)

  13. 13.

    et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006)

  14. 14.

    et al. Discovery of the nearby long, soft GRB 100316D with an associated supernova. Mon. Not. R. Astron. Soc. 411, 2792–2803 (2011)

  15. 15.

    et al. GRB 090618: detection of thermal X-ray emission from a bright gamma-ray burst. Mon. Not. R. Astron. Soc. 416, 2078–2089 (2011)

  16. 16.

    et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006)

  17. 17.

    et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006)

  18. 18.

    et al. A tale of two GRB-SNe at a common redshift of z = 0.54. Mon. Not. R. Astron. Soc. 413, 669–685 (2011)

  19. 19.

    & Helium star/black hole mergers: a new gamma-ray burst model. Astrophys. J. 502, L9–L12 (1998)

  20. 20.

    & The merger of a helium star and a black hole: gamma-ray bursts. Astrophys. J. 550, 357–367 (2001)

  21. 21.

    & Recycling of neutron stars in common envelopes and hypernova explosions. Mon. Not. R. Astron. Soc. 415, 944–958 (2011)

  22. 22.

    et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008)

Download references


This Letter is based on observations collected at CAHA/Calar Alto, GTC/La Palma, the Liverpool Telescope at ORM/La Palma, the McDonald Observatory at the University of Texas at Austin, and Gemini-North and Keck on Hawaii. We thank J. S. Bloom for helping with the Keck observations. The Dark Cosmology Centre is funded by the DNRF. K.L.P., S.R.O. and M.D.P. acknowledge the support of the UK Space Agency. J.G., S.G. and P.K. are partially supported by MICINN. M.A.A. and P.M. are supported by an ERC starting grant. H.T.J. acknowledges support by a DFG grant. M.I., W.-K.P., C.C., J.L. and S.P. acknowledge support from CRI/NRF/MEST of Korea. A.M. acknowledges support from the Russian government. We thank A. J. Castro-Tirado for help in obtaining the data from the BTA 6-m telescope and comments on an early draft.

Author information


  1. IAA – CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain

    • C. C. Thöne
    • , J. Gorosabel
    • , S. Guziy
    • , L. Hernández García
    •  & P. Kubànek
  2. Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

    • C. C. Thöne
  3. Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark

    • A. de Ugarte Postigo
  4. Los Alamos National Laboratory, MS D409, CCS-2, Los Alamos, New Mexico 87545, USA

    • C. L. Fryer
  5. Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK

    • K. L. Page
  6. Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Spain

    • M. A. Aloy
    •  & P. Mimica
  7. Astronomy Department, UC Berkeley, 601 Campbell Hall, Berkeley, California 94720, USA

    • D. A. Perley
    • , K. Bundy
    •  & I. Parrish
  8. Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, Alabama 35812, USA

    • C. Kouveliotou
  9. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany

    • H. T. Janka
  10. NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • J. L. Racusin
    • , H. Krimm
    • , J. Cummings
    • , S. T. Holland
    •  & E. Sonbas
  11. Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, Maryland 21044-3432, USA

    • H. Krimm
    • , S. T. Holland
    •  & E. Sonbas
  12. Center for Research and Exploration in Space Science and Technology (CRESST), 10211 Wincopin Circle, Suite 500, Columbia, Maryland 21044-3432, USA

    • H. Krimm
    •  & S. T. Holland
  13. Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

    • S. R. Oates
    •  & M. De Pasquale
  14. Department of Astronomy and Astrophysics, Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, USA

    • M. H. Siegel
  15. University of Adıyaman, Department of Physics, 02040 Adıyaman, Turkey

    • E. Sonbas
  16. Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University, 56-1 San, Shillim-dong, Kwanak-gu, Seoul, South Korea

    • M. Im
    • , W.-K. Park
    •  & C. Choi
  17. Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany

    • D. A. Kann
  18. Nikolaev National University, Nikolska 24, Nikolaev, 54030, Ukraine

    • S. Guziy
  19. Herschel Science Operations Centre, INSA, ESAC, Villafranca del CastilloPO Box 50727, I-28080 Madrid, Spain

    • A. Llorente
  20. School of Space Research, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea

    • H. Jeong
    •  & S. Pak
  21. Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland

    • H. Korhonen
  22. Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark

    • H. Korhonen
  23. Institute of Physics, Na Slovance 2, 180 00, Prague 8, Czech Republic

    • P. Kubànek
  24. Department of Astronomy and Space Science, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea

    • J. Lim
  25. Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz 369167, Russia

    • A. Moskvitin
  26. INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy

    • T. Muñoz-Darias


  1. Search for C. C. Thöne in:

  2. Search for A. de Ugarte Postigo in:

  3. Search for C. L. Fryer in:

  4. Search for K. L. Page in:

  5. Search for J. Gorosabel in:

  6. Search for M. A. Aloy in:

  7. Search for D. A. Perley in:

  8. Search for C. Kouveliotou in:

  9. Search for H. T. Janka in:

  10. Search for P. Mimica in:

  11. Search for J. L. Racusin in:

  12. Search for H. Krimm in:

  13. Search for J. Cummings in:

  14. Search for S. R. Oates in:

  15. Search for S. T. Holland in:

  16. Search for M. H. Siegel in:

  17. Search for M. De Pasquale in:

  18. Search for E. Sonbas in:

  19. Search for M. Im in:

  20. Search for W.-K. Park in:

  21. Search for D. A. Kann in:

  22. Search for S. Guziy in:

  23. Search for L. Hernández García in:

  24. Search for A. Llorente in:

  25. Search for K. Bundy in:

  26. Search for C. Choi in:

  27. Search for H. Jeong in:

  28. Search for H. Korhonen in:

  29. Search for P. Kubànek in:

  30. Search for J. Lim in:

  31. Search for A. Moskvitin in:

  32. Search for T. Muñoz-Darias in:

  33. Search for S. Pak in:

  34. Search for I. Parrish in:


C.C.T. did the overall management of the observations and modelling, the analysis of the spectra and wrote most of the manuscript. A.d.U.P. did the UVOIR black-body modelling, supernova template fitting, most of the optical/infrared photometry and lead the GTC observations. C.L.F. suggested and investigated the progenitor system. K.L.P. did the X-ray analysis, J.G. worked on the supernova templates and the photometric calibrations for the optical/infrared data. M.A.A. did the modelling of the UVOIR black body and X-ray emission from numerical simulations. D.A.P. contributed to the observation and analysis of the late Gemini and Keck data. C.K. investigated possible progenitor models. H.TJ., P.M. and A.L. contributed to the theoretical modelling. J.L.R., H.K., J.C., S.R.O., S.T.H., M.H.S., M.D.P. and E.S. did the analysis of the Swift data. M.I., W.-K.P., C.C., H.J., J.L. and S.P. contributed the McDonald 2.1-m data, A.M. the late BTA 6-m data, K.B. and I.P. the late Keck spectrum. D.A.K. did the comparison of supernova stretching factors and luminosities. S.G. and L.H.G. helped with the optical photometry. H.K. and T.M.-D. investigated alternative interpretations of the event, and P.K. assisted with the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to C. C. Thöne.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text and Data 1 - 8, Supplementary Figures 1-19 with legends, Supplementary Tables 1- 7 and additional references.

About this article

Publication history





Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.