Review Article | Published:

Assembly of hybrid photonic architectures from nanophotonic constituents

Nature volume 480, pages 193199 (08 December 2011) | Download Citation

Abstract

The assembly of hybrid nanophotonic devices from different fundamental photonic entities—such as single molecules, nanocrystals, semiconductor quantum dots, nanowires and metal nanoparticles—can yield functionalities that exceed those of the individual subunits. Combining these photonic elements requires nanometre-scale fabrication precision and potentially involves a material diversity that is incompatible with standard nanotechnological processes. Although merging these different systems on a single hybrid platform is at present challenging, it promises improved performance and novel devices. Particularly rapid progress is seen in the combination of plasmonic–dielectric constituents with quantum emitters that can be assembled on demand into fundamental model systems for future optical elements.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Single electron pump fabricated with ultrasmall normal tunnel-junctions. Physica B 169, 573–574 (1991)

  2. 2.

    Single-electron devices and their applications. Proc. IEEE 87, 606–632 (1999)

  3. 3.

    , , & . McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997)

  4. 4.

    , , & (eds) Spintronics (Semiconductors and Semimetals 82, Elsevier, 2008)

  5. 5.

    Nanophotonics (Wiley, 2004)

  6. 6.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

  7. 7.

    Recent developments in artificial molecular-machine-based active nanomaterials and nanosystems. MRS Bull. 33, 226–231 (2008)

  8. 8.

    , & Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

  9. 9.

    & Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007)

  10. 10.

    , , , & Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)

  11. 11.

    et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

  12. 12.

    & A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

  13. 13.

    et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006)

  14. 14.

    & (eds) Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Wiley, 2003)

  15. 15.

    & Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005)

  16. 16.

    et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008)

  17. 17.

    , & Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2, 190–204 (2006)

  18. 18.

    Optical microcavities. Nature 424, 839–846 (2003)

  19. 19.

    ed. Cavity Quantum Electrodynamics (Academic, 1993)

  20. 20.

    Plasmonics: Fundamentals and Applications (Springer, 2007)

  21. 21.

    , , , & Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)

  22. 22.

    in Photonic Crystals: Molding the Flow of Light ( & ) (Princeton Univ. Press, 1995)

  23. 23.

    , & Photonic devices based on in-plane hetero photonic crystals. Science 300, 1537 (2003)

  24. 24.

    & Focus on plasmonics. N. J. Phys. 10, 105001 (2008)

  25. 25.

    et al. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008)

  26. 26.

    , , & Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008)

  27. 27.

    , , , & Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007)

  28. 28.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

  29. 29.

    , & (eds) Focus on single photons on demand. N. J. Phys. 6, (2004)

  30. 30.

    , , & Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

  31. 31.

    et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008)

  32. 32.

    , , , & Reversible polarization control of single photon emission. Nano Lett. 8, 606–610 (2008)

  33. 33.

    et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

  34. 34.

    , & Metamaterials and negative refractive index. Science 305, 788–792 (2004)

  35. 35.

    & Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002)

  36. 36.

    , , & Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

  37. 37.

    et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008)

  38. 38.

    & Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

  39. 39.

    , , & Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

  40. 40.

    et al. Dipole induced transparency in waveguide coupled photonic crystal cavities. Opt. Express 16, 12154–12162 (2008)

  41. 41.

    , , & A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007)This paper put forward a proposal for a single-photon transistor using plasmons.

  42. 42.

    et al. Demonstration of a quantum controlled-NOT gate in the telecommunications band. Phys. Rev. Lett. 100, 133603 (2008)

  43. 43.

    , , & Logic and functional operations using a near-field optically coupled quantum-dot system. Phys. Rev. B 69, 115334 (2004)

  44. 44.

    et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009)This paper reported the enhancement of emission from single molecules coupled to a plasmonic antenna.

  45. 45.

    , , , & The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008)

  46. 46.

    , , , & Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009)

  47. 47.

    et al. Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Opt. Lett. 33, 1759–1761 (2008)

  48. 48.

    , & Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700–717 (2006)

  49. 49.

    et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon. 4, 302–306 (2010)

  50. 50.

    , , , & Colloidal assemblies on patterned silane layers. Proc. Natl Acad. Sci. USA 99, 5034–5039 (2002)

  51. 51.

    et al. Wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008)This paper reported a photonic structure using active semiconductor nanowires to light up photonic crystal waveguides.

  52. 52.

    et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

  53. 53.

    , , & Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

  54. 54.

    , & Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

  55. 55.

    & Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

  56. 56.

    , , , & Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008)

  57. 57.

    , & Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Appl. Phys. Lett. 92, 023109 (2008)

  58. 58.

    et al. Imaging and manipulation of gold nanorods with an atomic force microscope. J. Phys. Chem. B 106, 231–234 (2002)

  59. 59.

    , , & Controlled manipulation of nanoparticles with an atomic-force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995)

  60. 60.

    & AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. Nanotechnology 13, 108–113 (2002)

  61. 61.

    , , , & Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing. Nano Lett. 5, 2624–2629 (2005)

  62. 62.

    , & Applications of dip-pen nanolithography. Nature Nanotechnol. 2, 145–155 (2007)

  63. 63.

    , , , & Capturing and depositing one nanoobject at a time: single particle dip-pen nanolithography. Appl. Phys. Lett. 90, 133102 (2007)

  64. 64.

    et al. Fiber-integrated diamond-based single photon source. Nano Lett. 11, 198–202 (2011)

  65. 65.

    , & Nanowire photonics. Nature Photon. 3, 569–576 (2009)

  66. 66.

    & Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006)

  67. 67.

    & Applied physics - diamond for quantum computing. Science 320, 1601–1602 (2008)

  68. 68.

    , , & Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000)

  69. 69.

    , , & Plasmon-enhanced single photon emission from a nano-assembled metal-diamond hybrid structure at room-temperature. Nano Lett. 9, 1694–1698 (2009)This paper reported plasmon-enhanced emission of single photons from a single defect centre.

  70. 70.

    et al. Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy. Opt. Lett. 33, 611–613 (2008)

  71. 71.

    et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005)

  72. 72.

    , , & Direct photonic-plasmonic coupling and routing in single nanowires. Proc. Natl Acad. Sci. USA 106, 21045–21050 (2009)This paper reported the excitation of plasmons by connecting silver nanowires to an active SnO2 nanoribbon.

  73. 73.

    et al. Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011)

  74. 74.

    Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010)

  75. 75.

    et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)

  76. 76.

    et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009)This paper reported all-electrical plasmon detection using a field-effect transistor.

  77. 77.

    et al. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett. 87, 021108 (2005)

  78. 78.

    , & Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals. Phys. Rev. B 77, 033201 (2008)

  79. 79.

    et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)

  80. 80.

    et al. Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities. Appl. Phys. Lett. 95, 123113 (2009)

  81. 81.

    , , & Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009)

  82. 82.

    , & Photonic quantum technologies. Nature Photon. 3, 687–695 (2009)This paper reviewed integrated quantum technologies based on optical chips and single photons.

  83. 83.

    et al. Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution. Appl. Phys. A 91, 567–571 (2008)

  84. 84.

    et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

  85. 85.

    et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)This paper reported the observation of spaser activity from a gold nanoparticle surrounded by a dye-doped silica shell.

  86. 86.

    et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008)This paper reported electrical excitation of plasmons through coupling to an organic light-emitting-diode structure.

  87. 87.

    et al. A single-molecule optical transistor. Nature 460, 76–80 (2009)

  88. 88.

    et al. Microcavity single-photon-emitting diode. Appl. Phys. Lett. 86, 181102 (2005)

  89. 89.

    , , & Logic and functional operations using a near-field optically coupled quantum-dot system. Phys. Rev. B 69, 115334 (2004)

  90. 90.

    et al. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl. Phys. Lett. 94, 173104 (2009)

  91. 91.

    , , , & Coherent interference effects in a nano-assembled optical cavity-QED system. Opt. Express 17, 8081–8097 (2009)

  92. 92.

    et al. Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287–11294 (2009)

  93. 93.

    et al. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett. 10, 891–895 (2010)This paper reported Fano-type resonances in a coupled system consisting of a photonic crystal cavity and gold nanoparticles.

  94. 94.

    Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

  95. 95.

    , & Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

  96. 96.

    et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

  97. 97.

    et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

  98. 98.

    , & Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005)

  99. 99.

    , & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

Download references

Acknowledgements

I acknowledge financial supported by the Deutsche Forschungsgemeinschaft (BE2224/9, Sfb 951) and the Bundesministerium für Bildung und Forschung (KEPHOSI).

Author information

Affiliations

  1. Nano-Optik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany

    • Oliver Benson

Authors

  1. Search for Oliver Benson in:

Competing interests

The author declares no competing financial interests.

Corresponding author

Correspondence to Oliver Benson.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature10610

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.