Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active formation of ‘chaos terrain’ over shallow subsurface water on Europa

Abstract

Europa, the innermost icy satellite of Jupiter, has a tortured young surface1,2,3,4 and sustains a liquid water ocean1,2,3,4,5,6 below an ice shell of highly debated thickness1,2,3,4,5,7,8,9,10. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes10,18. Melt-through of a thin (few-kilometre) shell3,7,8 is thermodynamically improbable and cannot raise the ice10,18. The buoyancy of material rising as either plumes of warm, pure ice called diapirs1,9,10,11,12,13,14,15 or convective cells16,17 in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes10,18. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice–water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conamara Chaos is dominated by long-wavelength topography.
Figure 2: Thera Macula is a region of likely active chaos production above a large liquid water lens.
Figure 3: A new hypothesis for chaos formation.

Similar content being viewed by others

References

  1. Pappalardo, R. et al. Geological evidence for solid-state convection in Europa’s ice shell. Nature 391, 365–368 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Figueredo, P. H. & Greeley, R. Resurfacing history of Europa from pole-to-pole geological mapping. Icarus 167, 287–312 (2004)

    Article  ADS  Google Scholar 

  3. Carr, M. H. et al. Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Squyres, S. W., Reynolds, R. T., Cassen, P. & Peale, S. J. Liquid water and active resurfacing on Europa. Nature 301, 225–226 (1983)

    Article  ADS  CAS  Google Scholar 

  5. Cassen, P., Reynolds, R. T. & Peale, S. J. Is there liquid water on Europa? Geophys. Res. Lett. 6, 731–734 (1979)

    Article  ADS  Google Scholar 

  6. Kivelson, M. G. et al. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289, 1340–1343 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Greenberg, R. G. et al. Chaos on Europa. Icarus 141, 263–286 (1999)

    Article  ADS  Google Scholar 

  8. O’Brien, D. P., Geissler, P. & Greenberg, R. A melt through model for chaos formation on Europa. Icarus 156, 152–161 (2002)

    Article  ADS  Google Scholar 

  9. Schenk, P. & Pappalardo, R. T. Topographic variations in chaos on Europa: implications for diapiric formation. Geophys. Res. Lett. 31 L16703 10.1029/2004GL019978 (2004)

    Article  ADS  Google Scholar 

  10. Collins, G. C., Head, J. W., III, Pappalardo, R. T. & Spaun, N. A. Evaluation of models for the formation of chaotic terrain on Europa. J. Geophys. Res. 105, 1709–1716 (2000)

    Article  ADS  Google Scholar 

  11. Spaun, N. A. et al. Conamara Chaos region, Europa: reconstruction of mobile polygonal ice blocks. Geophys. Res. Lett. 25, 4277–4280 (1998)

    Article  ADS  Google Scholar 

  12. Rathbun, J. A., Musser, G. S., Jr & Squyres, S. W. Ice diapirs on Europa: implications for liquid water. Geophys. Res. Lett. 25, 4157–4160 (1998)

    Article  ADS  Google Scholar 

  13. Pappalardo, R. & Barr, A. C. The origin of domes on Europa: the role of thermally induced compositional diapirism. Geophys. Res. Lett. 31 L01701 10.1029/2003GL019202 (2004)

    Article  ADS  Google Scholar 

  14. Head, J. W. & Pappalardo, R. T. Brine mobilization during lithospheric heating on Europa: implications for formation of chaos terrain, lenticular texture, and color variations. J. Geophys. Res. 104 (E11). 27143–27155 (1999)

    Article  ADS  Google Scholar 

  15. Sotin, C., Head, J. W. & Tobie, G. Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys. Res. Lett. 29 1233 10.1029/2001GL013844 (2002)

    Article  ADS  Google Scholar 

  16. McKinnon, W. B. Convective instability in Europa’s floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999)

    Article  ADS  Google Scholar 

  17. Han, L. & Showman, A. P. Coupled convection and tidal dissipation in Europa’s ice shell. Icarus 207, 834–844 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Collins, G. C. & Nimmo, F. in Europa (eds Pappalardo, R. T., McKinnon, W. B. & Khurana, K.) 259–282 (Univ. Arizona Press, 2009)

    Google Scholar 

  19. Björnsson, H. Subglacial lakes and jökulhlaups in Iceland. Glob. Planet. Change 35, 255–271 (2003)

    Article  ADS  Google Scholar 

  20. Gudmundsson, M. T., Sigmundsson, F., Bjornsson, H. & Hognadottir, T. The 1996 eruption at Gjalp, Vatnajökull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bull. Volcanol. 66, 46–65 (2004)

    Article  ADS  Google Scholar 

  21. Kovacs, A. & Gow, A. J. Brine infiltration in the McMurdo Ice Shelf, McMurdo Sound, Antarctica. J. Geophys. Res. 80, 1957–1961 (1975)

    Article  ADS  Google Scholar 

  22. Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009)

    Article  ADS  CAS  Google Scholar 

  23. MacAyeal, D., Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice-shelf break-up by an ice-shelf fragment-capsize mechanism. J. Glaciol. 49, 22–36 (2003)

    Article  ADS  Google Scholar 

  24. McCord, T. B. et al. Hydrated salt minerals on Europa’s surface from the Galileo NIMS investigation. J. Geophys. Res. 104 (E5). 11827–11851 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Carlson, R. W. et al. Sulfuric acid production on Europa: the radiolysis of sulfur in water ice. Icarus 157, 456–463 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Gaidos, E. & Nimmo, F. Tectonics and water on Europa. Nature 405, 637 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Nye, J. F. & Potter, J. R. The use of catastrophe theory to analyse the stability and toppling of icebergs. Ann. Glaciol. 1, 49–54 (1980)

    Article  ADS  Google Scholar 

  28. Guttenberg, N. et al. A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration. Ann. Glaciol. 52, 51–59 (2011)

    Article  ADS  Google Scholar 

  29. Mevel, L. & Mercier, E. Large-scale doming on Europa: a model of formation of Thera Macula. Planet. Space Sci. 55, 915–927 (2007)

    Article  ADS  Google Scholar 

  30. Blankenship, D. D., Young, D. A., Moore, W. B. & Moore, J. C. in Europa (eds Pappalardo, R. T., McKinnon, W. B. & Khurana, K. ) 631–654 (Univ. Arizona Press, 2009)

    Google Scholar 

Download references

Acknowledgements

We thank D. Young, K. Soderlund, A. Barr, J. Greenbaum, J. Leisner and D. MacAyeal for comments and discussions on the development of these concepts. B.E.S. was supported by a fellowship from the Vetlesen Foundation and the Institute for Geophysics of the Jackson School of Geosciences, University of Texas at Austin (UTIG). D.D.B. was supported by NASA, NSF and UTIG. NASA supported the work of G.W.P. and P.M.S.

Author information

Authors and Affiliations

Authors

Contributions

B.E.S. and D.D.B. conceived of and actively discussed this project. B.E.S. analysed Galileo imaging data, found and studied terrestrial analogue information, analysed results, formulated the model, calculated values, and wrote the paper. D.D.B. provided discussion and direction, and edited the paper. G.W.P. performed the FFT analysis of Conamara Chaos topography data. P.M.S. produced the original DEM of Conamara and the photoclinometry of Thera Macula.

Corresponding author

Correspondence to B. E. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 with legends, Supplementary Text and additional references. (PDF 1194 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Blankenship, D., Patterson, G. et al. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011). https://doi.org/10.1038/nature10608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10608

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing