Letter | Published:

The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star

Nature volume 480, pages 6971 (01 December 2011) | Download Citation



The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically1,2 and numerically3. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation4,5,6. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun7 or onto planets8. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy9. Here we report that the peculiarities of the ‘Christmas’ gamma-ray burst (GRB 101225A10) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation11.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988)

  2. 2.

    in Proc. 136th IAU Symp. ‘The Center of the Galaxy’ (ed. ) 543–553 (Kluwer, 1989)

  3. 3.

    & The tidal disruption of a star by a massive black hole. Astrophys. J. 346, L13–L16 (1989)

  4. 4.

    et al. An ultraviolet flare at the centre of the elliptical galaxy NGC4552. Nature 378, 39–41 (1995)

  5. 5.

    , & Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. Astron. Astrophys. 309, L35–L38 (1996)

  6. 6.

    et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011)

  7. 7.

    , , & Coronagraphic observations of two new sungrazing comets. Nature 300, 239–242 (1982)

  8. 8.

    , , & Dynamic response of Jupiter’s atmosphere to the impact of comet Shoemaker-Levy 9. Nature 368, 525–527 (1994)

  9. 9.

    & Radiation from comets near neutron stars. Astrophys. J. 186, L37–L39 (1973)

  10. 10.

    et al. Swift observation of GRB101225A. GCN Rep. 314.1, (2011)

  11. 11.

    et al. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature doi:10.1038/nature10611 (this issue).

  12. 12.

    , & Gamma-ray bursts in the Swift Era. Annu. Rev. Astron. Astrophys. 47, 567–617 (2009)

  13. 13.

    et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006)

  14. 14.

    , , , & GRB101225A: MMT spectroscopy. GCN Circ. 11507, (2010)

  15. 15.

    et al. GRB101225A: HST observations - no host detected. GCN Circ. 11564, (2011)

  16. 16.

    et al. A gaseous metal disk around a white dwarf. Science 314, 1908–1910 (2006)

  17. 17.

    A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. 584, L91–L94 (2003)

  18. 18.

    Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999)

  19. 19.

    , & The disk accretion of a tidally disrupted star onto a massive black hole. Astrophys. J. 351, 38–46 (1990)

  20. 20.

    et al. Onset of a relativistic jet from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011)

  21. 21.

    & Multiband light curves of tidal disruption events. Mon. Not. R. Astron. Soc. 410, 359–367 (2011)

  22. 22.

    , & Consequences of the ejection and disruption of giant planets. Astrophys. J. 732, 74 (2011)

  23. 23.

    The disc instability model of dwarf novae and low-mass X–ray binary transients. N. Astron. Rev. 45, 449–508 (2001)

  24. 24.

    , & Stability of helium accretion discs in ultracompact binaries. Astron. Astrophys. 486, 523–528 (2008)

  25. 25.

    & Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds. Astron. J. 109, 690–697 (1995)

  26. 26.

    An upper bound to the space density of interstellar comets. Astron. J. 141, 155 (2011)

  27. 27.

    & A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147 (1992)

  28. 28.

    , , , & A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301, 193–196 (2003)

Download references


The authors acknowledge support from ASI and INAF. S. Campana wants to thank A. Possenti and N. Tanvir for conversations, and acknowledges N. Schartel for granting a DDT XMM-Newton observation.

Author information


  1. INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy

    • S. Campana
    • , P. D’Avanzo
    • , G. Tagliaferri
    • , S. Covino
    • , G. Ghirlanda
    • , G. Ghisellini
    • , A. Melandri
    • , D. Fugazza
    • , B. Sbarufatti
    •  & S. D.Vergani
  2. Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy

    • G. Lodato
  3. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

    • N. Panagia
  4. INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, I-95123 Catania, Italy

    • N. Panagia
  5. Supernova Ltd, OYV #131, Northsound Road, Virgin Gorda, British Virgin Islands

    • N. Panagia
  6. Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

    • E. M. Rossi
  7. INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli, Italy

    • M. Della Valle
  8. INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00044 Monte Porzio (Roma), Italy

    • L. A. Antonelli
    •  & V. D’Elia
  9. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

    • E. Pian
  10. INAF - Osservatorio Astronomico di Trieste, Via G. Tiepolo 11, I-34143 Trieste, Italy

    • E. Pian
  11. Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 7, I-22100 Como, Italy

    • R. Salvaterra
  12. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo, Italy

    • G. Cusumano
  13. ASI Science Data Centre, Via Galileo Galilei, I-00044 Frascati (Roma), Italy

    • V. D’Elia
  14. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, Sezione di Bologna, Via Gobetti 101, I-40129 Bologna, Italy

    • E. Palazzi


  1. Search for S. Campana in:

  2. Search for G. Lodato in:

  3. Search for P. D’Avanzo in:

  4. Search for N. Panagia in:

  5. Search for E. M. Rossi in:

  6. Search for M. Della Valle in:

  7. Search for G. Tagliaferri in:

  8. Search for L. A. Antonelli in:

  9. Search for S. Covino in:

  10. Search for G. Ghirlanda in:

  11. Search for G. Ghisellini in:

  12. Search for A. Melandri in:

  13. Search for E. Pian in:

  14. Search for R. Salvaterra in:

  15. Search for G. Cusumano in:

  16. Search for V. D’Elia in:

  17. Search for D. Fugazza in:

  18. Search for E. Palazzi in:

  19. Search for B. Sbarufatti in:

  20. Search for S. D.Vergani in:


S. Campana led the research and wrote the majority of manuscript, invented the tidal disruption model, and did the X-ray data analysis. G.L. and E.M.R. worked on the tidal disruption model, fitted the light curves providing the minor-body parameters, and estimated the rate of events. P.D.’A. analysed optical data. N.P., M.D.V., G.T. and S. Covino contributed to the exclusion of Galactic models. G. Ghisellini, G. Ghirlanda, N.P., E. Pian and M.D.V. contributed to the exclusion of extragalactic models. R.S. contributed to exclude the possibility of tidal disruption onto an intermediate-mass black hole. L.A.A., A.M., G.C., V.D.’E., D.F., E. Palazzi, B.S. and S.D.V. contributed in obtaining optical data and provided an unbiased reading of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. Campana.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text and Data, Supplementary Tables 1-5, Supplementary Figures 1-3 with legends and additional references.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.