Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

East Antarctic rifting triggers uplift of the Gamburtsev Mountains

Abstract

The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 19581. The preservation of Alpine topography in the Gamburtsevs2 may reflect extremely low long-term erosion rates beneath the ice sheet3, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root4 beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens5,6 and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa7, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: East Antarctica in Gondwana and seismic tomography through the Gamburstev Subglacial Mountains.
Figure 2: Geophysical data and interpretation over central East Antarctica.
Figure 3: Crustal architecture and uplift processes for the Gamburtsev Subglacial Mountains.
Figure 4: Schematic of the elements contributing to Gamburtsev Mountains uplift.

Similar content being viewed by others

References

  1. Sorokhtin, O., Avsyuk, G. Y. & Koptev, V. I. Determination of the thickness of the ice cap in East Antarctica Inform . Bull. Soviet Antarctic Expedition 11, 9–13 (1959)

    Google Scholar 

  2. Bo, S. et al. The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature 459, 690–693 (2009)

    Article  ADS  Google Scholar 

  3. Cox, S. E. et al. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica. Geophys. Res. Lett. 37, L22307 (2010)

    Article  ADS  Google Scholar 

  4. Hansen, S. E. et al. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth Planet. Sci. Lett. 300, 395–401 (2010)

    Article  CAS  ADS  Google Scholar 

  5. Fischer, K. M. Waning buoyancy in the crustal roots of old mountains. Nature 417, 933–936 (2002)

    Article  CAS  ADS  Google Scholar 

  6. Leech, M. L. Arrested orogenic development: eclogitization, delamination and tectonic collapse. Earth Planet. Sci. Lett. 185, 149–159 (2001)

    Article  CAS  ADS  Google Scholar 

  7. Petit, C. & Ebinger, C. Flexure and mechanical behavior of cratonic lithosphere: gravity models of the East African and Baikal rifts. J. Geophys. Res. 105, 19151–19162 (2000)

    Article  ADS  Google Scholar 

  8. Boger, S. D. et al. Pan-African intraplate deformation in the northern Prince Charles Mountains, East Antarctica. Earth Planet. Sci. Lett. 195, 195–210 (2002)

    Article  CAS  ADS  Google Scholar 

  9. Veevers, J. J., Saeed, A. & O'Brien, P. E. Provenance of the Gamburtsev Subglacial Mountains from U–Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf. Sedim. Geol. 211, 12–13 (2008)

    Article  CAS  ADS  Google Scholar 

  10. Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L. & Leahy, G. M. Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res. 106, 30,645–30,670 (2001)

    Article  ADS  Google Scholar 

  11. Fitzsimons, I. C. W. in Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. F. & Dasgupta, S. ) 93–103 (Geol. Soc. London, 2003)

    Google Scholar 

  12. Veevers, J. J. Case for the Gamburtsev Subglacial Mountains of East Antarctica orginating by mid-Carboniferous shortening of an intracratonic basement. Geology 22, 593–596 (1994)

    Article  ADS  Google Scholar 

  13. Sleep, N. H. Mantle plumes from top to bottom. Earth Sci. Rev. 77, 231–271 (2006)

    Article  ADS  Google Scholar 

  14. Maus, S. et al. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2008)

    Article  ADS  Google Scholar 

  15. Pail, R. et al. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 37, L20314 (2010)

    Article  ADS  Google Scholar 

  16. Golynsky, A. V., Alyavdin, S. V., Masolov, V. N., Tscherinov, A. S. & Volnukhin, V. S. The composite magnetic anomaly map of the East Antarctic. Tectonophysics 347, 109–120 (2002)

    Article  ADS  Google Scholar 

  17. McLean, M. A. et al. Basement interpretations from airborne magnetic and gravity data over the Lambert Rift region of East Antarctica. J. Geophys. Res. 144, B06101 (2009)

    ADS  Google Scholar 

  18. Studinger, M. et al. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet. Sci. Lett. 216, 663–677 (2003)

    Article  CAS  ADS  Google Scholar 

  19. Audet, P. & Bürgmann, R. Dominant role of tectonic inheritance in supercontinent cycles. Nature Geosci. 4, 184–187 (2011)

    Article  CAS  ADS  Google Scholar 

  20. Reading, A. M. The seismic structure of Precambrian and early Palaeozoic terranes in the Lambert Glacier region, East Antarctica. Earth Planet. Sci. Lett. 244, 44–57 (2006)

    Article  CAS  ADS  Google Scholar 

  21. Leitchenkov, G. L., Belyatsky, B. V., Rodionov, N. V. & Sergeev, S. A. in Antarctica: A Keystone in a Changing World — Online Proceedings of the 10th ISAES (eds Cooper, A. K. & Raymond, C. R. ) Short res. paper 14 (USGS Open-File Report 2007–1047, 2007)

    Google Scholar 

  22. Avigad, D. & Gvirtzman, Z. Late Neoproterozoic rise and fall of the northern Arabian–Nubian shield: The role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477, 217–228 (2009)

    Article  ADS  Google Scholar 

  23. Phillips, G. & Läufer, A. L. Brittle deformation relating to the Carboniferous–Cretaceous evolution of the Lambert Graben, East Antarctica: A precursor for Cenozoic relief development in an intraplate and glaciated region. Tectonophysics 471, 216–224 (2009)

    Article  ADS  Google Scholar 

  24. Stern, T. A., Baxter, A. K. & Barrett, P. J. Isostatic rebound due to glacial erosion within the Transantarctic Mountains. Geology 33, 221–224 (2005)

    Article  ADS  Google Scholar 

  25. Lisker, F., Gibson, H., Wilson, C. J. & Läufer, A. in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES (eds Cooper, A. K. & Raymond, C. R. ) Short res. paper 105 (USGS Open-File Report 2007–1047, 2007)

    Google Scholar 

  26. Semprich, J., Simon, N. S. C. & Podladchikov, Y. Y. Density variations in the thickened crust as a function of pressure, temperature, and composition. Int. J. Earth Sci. 99, 1487–1510 (2010)

    Article  CAS  Google Scholar 

  27. Jackson, J. A., Austrheim, H., McKenzie, D. & Priestley, K. Metastability, mechanical strength, and the support of mountain belts. Geology 32, 625–628 (2004)

    Article  ADS  Google Scholar 

  28. Levander, A. et al. Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature 472, 461–465 (2011)

    Article  CAS  ADS  Google Scholar 

  29. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005)

    Article  CAS  ADS  Google Scholar 

  30. Veevers, J. J. Palinspastic (pre-drift and –drift) fit of India and conjugate Antarctica and geological connections across the suture. Gondwana Res. 16, 90–108 (2009)

    Article  ADS  Google Scholar 

  31. Lythe, M., Vaughan, D. G. & the BEDMAP Consortium BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 106, 11335–11351 (2001)

    Article  ADS  Google Scholar 

  32. Popov, S. V. et al. Antarctica: A Keystone in a Changing World — Online Proceedings of the 10th ISAES (eds. Cooper, A. K. & Raymond, C. R. ) Extended abstr. 26 (USGS Open-File Report 2007–1047, 2007)

  33. Damm, V. A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery Ice Shelf System — results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antartica 14, 85–94 (2007)

    Google Scholar 

  34. Journel, A. G. & Huijbregts, C. J. Mining Geostatistics (Academic, 1978)

    Google Scholar 

  35. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008)

    Article  ADS  Google Scholar 

  36. O'Neill, C., Müller, R. D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005)

    Article  ADS  Google Scholar 

  37. Müller, R. D., Royer, J. L. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993)

    Article  Google Scholar 

  38. Ferraccioli, F., Gambetta, M. & Bozzo, E. Microlevelling procedures applied to regional aeromagnetic data: an example from the Transantarctic Mountains (Antarctica). Geophys. Prospect. 46, 177–196 (1998)

    Article  ADS  Google Scholar 

  39. Pilkington, M. & Thurston, B. J. Draping corrections for aeromagnetic data: line versus grid-based approaches. Explor. Geophys. 32, 95–101 (2001)

    Article  Google Scholar 

  40. Golynsky, A. et al. in BAS (Misc.) (eds Morris, P. & von Frese, R. ) Vol. 10 (British Antarctic Survey, 2001)

  41. Johnson, A., Cheeseman, S. & Ferris, J. Improved compilation of Antarctic Peninsula magnetic data by new interactive grid suturing and blending methods. Ann. Geofis. 42, 249–259 (1999)

    Google Scholar 

  42. Cooper, G. R. J. & Cowan, D. R. Terracing potential field data. Geophysical Prospecting 57, 1067–1071 (2009)

    Article  ADS  Google Scholar 

  43. Hemant, K. & Maus, S. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique. J. Geophys. Res. 110, B12103 (2005)

    Article  ADS  Google Scholar 

  44. Ku, C. C. & Sharp, J. A. Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt inverse modelling. Geophysics 48, 754–774 (1983)

    Article  ADS  Google Scholar 

  45. Parker, R. L. Rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc. 31, 447–455 (1973)

    Article  ADS  Google Scholar 

  46. Watts, A. B. Isostasy and Flexure of the Lithosphere. (Cambridge University Press, 2001)

    Google Scholar 

  47. Scarrow, J. H., Ayala, C. & Kimbell, G. S. Insights into orogenesis: getting to the root of a continent-ocean-continent collision, Southern Urals, Russia. J. Geol. Soc. Lond. 159, 659–671 (2002)

    Article  Google Scholar 

  48. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  49. McKenzie, D. Estimating Te in the presence of internal loads. J. Geophys. Res. 108, (2003)

  50. Pérez-Gussinyé, M. & Watts, A. B. The long-term strength of Europe and its implications for plate-forming processes. Nature 436, 381–384 (2005)

    Article  ADS  Google Scholar 

  51. Wienecke, S., Braitenberg, C. & Goetze, H. J. A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys. J. Int. 169, 789–794 (2007)

    Article  ADS  Google Scholar 

  52. Braitenberg, C., Ebbing, J. & Götze, H. J. Inverse modelling of elastic thickness by convolution method—the eastern Alps as a case example. Earth Planet. Sci. Lett. 202, 387–404 (2002)

    Article  CAS  ADS  Google Scholar 

  53. Gimenez, M. E., Braitenberg, C., Martinez, M. P. & Introcaso, A. A comparative analysis of seismological and gravimetric crustal thicknesses below the Andean Region with flat subduction of the Nazca Plate. Int. J. Geophys. 2009, 607458 (2009)

    Article  Google Scholar 

  54. Burov, E., Jaupart, C. & Mareshal, J. C. Large-scale crustal heterogeneities and lithospheric strength in cratons. Earth Planet. Sci. Lett. 164, 205–219 (1998)

    Article  CAS  ADS  Google Scholar 

  55. ten Brink, U. & Stern, T. Rift flank uplifts and hinterland basins: comparison of the Transantarctic Mountains with the Great Escarpment of Southern Africa. J. Geophys. Res. 97, 569–585 (1992)

    Article  ADS  Google Scholar 

  56. Karner, G. D. & Watts, A. B. Gravity anomalies and flexure of the lithosphere at mountain ranges. J. Geophys. Res. 88, 10449–10477 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the seven nations involved in the AGAP International Polar Year effort for their major logistical, financial and intellectual support. The US Antarctic Program of the National Science Foundation provided support for the logistics, the development of the instrumentation and data analysis. The Natural Environment Research Council/British Antarctic Survey provided support for deep-field operations, data collection and analysis. The Federal Institute for Geosciences and Resources provided financial support. The Australian Antarctic Division provided support at the AGAP North field camp; the Chinese Antarctic programme and the Alfred Wegner Institute also assisted. We thank all the AGAP project members involved, and in particular M. Studinger, N. Frearson and C. Robinson. C. Ebinger provided an early review and P. Molnar provided discussions. S. Golynsky provided geophysical data over adjacent regions and related discussions. We thank C. Braitenberg for assistance with Lithoflex and R. Buck for providing 2D flexural modelling code. J. J. Veevers provided a review.

Author information

Authors and Affiliations

Authors

Contributions

F.F. processed magnetic data, compiled radar, magnetic and gravity images, performed gravity modelling and, with C.A.F., led data interpretation and paper development. T.A.J. processed the gravity data and ran the 2D flexural models. R.E.B. helped in writing sections of the paper. L.M.A. performed elastic thickness modelling and Gondwana reconstruction. D.D. contributed magnetic data processing. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Fausto Ferraccioli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-11, Supplementary Table 1 and additional references. (PDF 7635 kb)

Supplementary Movie 1

The movie shows a 3D perspective of the Gamburtsev Province in interior East Antarctica. The fly-through begins from Lake Vostok and proceeds along the Eastern Rifts that flank the Gamburtsevs. Lake Sovetskaya and Lake 90E are interpreted as lying in deep rift basins, and further north the Lambert Rift is imaged beneath the Lambert Glacier. The underlying grid depicts the proposed crust-mantle boundary. Note the thick root beneath the Gamburstev Subglacial Mountains and the thinner crust under the East Antarctic Rift System. (ZIP 19348 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraccioli, F., Finn, C., Jordan, T. et al. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392 (2011). https://doi.org/10.1038/nature10566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10566

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing