Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-canonical inflammasome activation targets caspase-11


Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response1,2,3,4,5. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4)6,7,8 is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11−/− mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells9,10. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1–/– mice lack both caspase-11 and caspase-1. Interestingly, Casp11–/– macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1–/–Casp11129mt/129mt macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Germline mutation of Casp11 in mouse strain 129 abolishes inflammasome activation by CTB.
Figure 2: Caspase-11 mediates non-canonical inflammasome activation by CTB, E. coli, C. rodentium and V. cholerae.
Figure 3: Caspase-1 and caspase-11 have stimulus-specific roles during inflammasome activation.
Figure 4: Caspase-11 rather than caspase-1 is required for LPS-induced lethality.

Similar content being viewed by others


  1. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    Article  CAS  Google Scholar 

  3. Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30, 628–631 (2010)

    Article  CAS  Google Scholar 

  4. Franchi, L., Warner, N., Viani, K. & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009)

    Article  CAS  Google Scholar 

  5. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011)

    Article  CAS  Google Scholar 

  6. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000)

    Article  CAS  Google Scholar 

  7. Wang, S. et al. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271, 20580–20587 (1996)

    Article  CAS  Google Scholar 

  8. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998)

    Article  CAS  Google Scholar 

  9. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995)

    Article  CAS  Google Scholar 

  11. Freche, B., Reig, N. & van der Goot, F. G. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin. Immunopathol. 29, 249–260 (2007)

    Article  CAS  Google Scholar 

  12. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006)

    Article  CAS  Google Scholar 

  13. Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552 (2010)

    Article  CAS  Google Scholar 

  14. Dunne, A. et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis . J. Immunol. 185, 1711–1719 (2010)

    Article  CAS  Google Scholar 

  15. Meixenberger, K. et al. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J. Immunol. 184, 922–930 (2010)

    Article  CAS  Google Scholar 

  16. Beddoe, T., Paton, A. W., Le Nours, J., Rossjohn, J. & Paton, J. C. Structure, biological functions and applications of the AB5 toxins. Trends Biochem. Sci. 35, 411–418 (2010)

    Article  CAS  Google Scholar 

  17. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001)

    Article  CAS  Google Scholar 

  22. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Toma, C. et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-κB signaling. J. Immunol. 184, 5287–5297 (2010)

    Article  CAS  Google Scholar 

  24. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002)

    Article  CAS  Google Scholar 

  25. Wickliffe, K. E., Leppla, S. H. & Moayeri, M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell. Microbiol. 10, 332–343 (2008)

    Article  CAS  Google Scholar 

  26. Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997)

    Article  CAS  Google Scholar 

  28. Walsh, J. G., Logue, S. E., Luthi, A. U. & Martin, S. J. Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J. Biol. Chem. 286, 32513–32524 (2011)

    Article  CAS  Google Scholar 

  29. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006)

    Article  CAS  Google Scholar 

  30. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010)

    Article  CAS  Google Scholar 

  31. Jones, J. W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis . Proc. Natl Acad. Sci. USA 107, 9771–9776 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Qu, Y. et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553–6561 (2011)

    Article  CAS  Google Scholar 

  33. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005)

    Article  Google Scholar 

  34. Lee, E. C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001)

    Article  CAS  Google Scholar 

  35. Van Keuren, M. L., Gavrilina, G. B., Filipiak, W. E., Zeidler, M. G. & Saunders, T. L. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18, 769–785 (2009)

    Article  Google Scholar 

Download references


We thank F.-X. Blaudin de Thé, A. Paler Martinez, R. J. Newman, X. Rairdan, N. Ota, J. Ngo, L. Nguyen, A. Leung, L. Tam, M. Schlatter, H. Nguyen, V. Asghari and K. O’Rourke for technical support, M. van Lookeren Campagne, D. French, S. Mariathasan, T.-D. Kanneganti and D.M. Monack for discussion and reagents.

Author information

Authors and Affiliations



N.K., M.L., L.V.W., S.L., J.D., Y.Q. and S.H. designed and performed in vitro experiments. N.K., S.L., J.D., J.Z. and W.P.L. designed and performed in vivo experiments. S.W., M.R.-G. and K.N. generated the Casp11–/– and Casp1–/–Casp11Tg mice. J.L. performed bioinformatics analyses. N.K., S.W., K.N. and V.M.D. prepared the manuscript. N.K. and V.M.D. contributed to the study design and data analyses.

Corresponding authors

Correspondence to Nobuhiko Kayagaki or Vishva M. Dixit.

Ethics declarations

Competing interests

Most authors were employees of Genentech, Inc.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-7 with legends and Supplementary Tables 1-2. (PDF 1167 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kayagaki, N., Warming, S., Lamkanfi, M. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing