Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-canonical inflammasome activation targets caspase-11

Abstract

Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response1,2,3,4,5. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4)6,7,8 is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11−/− mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells9,10. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1–/– mice lack both caspase-11 and caspase-1. Interestingly, Casp11–/– macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1–/–Casp11129mt/129mt macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Germline mutation of Casp11 in mouse strain 129 abolishes inflammasome activation by CTB.
Figure 2: Caspase-11 mediates non-canonical inflammasome activation by CTB, E. coli, C. rodentium and V. cholerae.
Figure 3: Caspase-1 and caspase-11 have stimulus-specific roles during inflammasome activation.
Figure 4: Caspase-11 rather than caspase-1 is required for LPS-induced lethality.

References

  1. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774 (1992)

    ADS  CAS  Article  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    CAS  Article  Google Scholar 

  3. Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30, 628–631 (2010)

    CAS  Article  Google Scholar 

  4. Franchi, L., Warner, N., Viani, K. & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009)

    CAS  Article  Google Scholar 

  5. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011)

    CAS  Article  Google Scholar 

  6. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000)

    CAS  Article  Google Scholar 

  7. Wang, S. et al. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271, 20580–20587 (1996)

    CAS  Article  Google Scholar 

  8. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998)

    CAS  Article  Google Scholar 

  9. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995)

    ADS  CAS  Article  Google Scholar 

  10. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995)

    CAS  Article  Google Scholar 

  11. Freche, B., Reig, N. & van der Goot, F. G. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin. Immunopathol. 29, 249–260 (2007)

    CAS  Article  Google Scholar 

  12. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006)

    CAS  Article  Google Scholar 

  13. Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552 (2010)

    CAS  Article  Google Scholar 

  14. Dunne, A. et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis . J. Immunol. 185, 1711–1719 (2010)

    CAS  Article  Google Scholar 

  15. Meixenberger, K. et al. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J. Immunol. 184, 922–930 (2010)

    CAS  Article  Google Scholar 

  16. Beddoe, T., Paton, A. W., Le Nours, J., Rossjohn, J. & Paton, J. C. Structure, biological functions and applications of the AB5 toxins. Trends Biochem. Sci. 35, 411–418 (2010)

    CAS  Article  Google Scholar 

  17. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006)

    ADS  CAS  Article  Google Scholar 

  18. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009)

    ADS  CAS  Article  Google Scholar 

  20. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009)

    ADS  CAS  Article  Google Scholar 

  21. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001)

    CAS  Article  Google Scholar 

  22. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006)

    ADS  CAS  Article  Google Scholar 

  23. Toma, C. et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-κB signaling. J. Immunol. 184, 5287–5297 (2010)

    CAS  Article  Google Scholar 

  24. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002)

    CAS  Article  Google Scholar 

  25. Wickliffe, K. E., Leppla, S. H. & Moayeri, M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell. Microbiol. 10, 332–343 (2008)

    CAS  Article  Google Scholar 

  26. Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997)

    ADS  CAS  Article  Google Scholar 

  27. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997)

    CAS  Article  Google Scholar 

  28. Walsh, J. G., Logue, S. E., Luthi, A. U. & Martin, S. J. Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J. Biol. Chem. 286, 32513–32524 (2011)

    CAS  Article  Google Scholar 

  29. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006)

    CAS  Article  Google Scholar 

  30. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010)

    CAS  Article  Google Scholar 

  31. Jones, J. W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis . Proc. Natl Acad. Sci. USA 107, 9771–9776 (2010)

    ADS  CAS  Article  Google Scholar 

  32. Qu, Y. et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553–6561 (2011)

    CAS  Article  Google Scholar 

  33. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005)

    Article  Google Scholar 

  34. Lee, E. C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001)

    CAS  Article  Google Scholar 

  35. Van Keuren, M. L., Gavrilina, G. B., Filipiak, W. E., Zeidler, M. G. & Saunders, T. L. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18, 769–785 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank F.-X. Blaudin de Thé, A. Paler Martinez, R. J. Newman, X. Rairdan, N. Ota, J. Ngo, L. Nguyen, A. Leung, L. Tam, M. Schlatter, H. Nguyen, V. Asghari and K. O’Rourke for technical support, M. van Lookeren Campagne, D. French, S. Mariathasan, T.-D. Kanneganti and D.M. Monack for discussion and reagents.

Author information

Authors and Affiliations

Authors

Contributions

N.K., M.L., L.V.W., S.L., J.D., Y.Q. and S.H. designed and performed in vitro experiments. N.K., S.L., J.D., J.Z. and W.P.L. designed and performed in vivo experiments. S.W., M.R.-G. and K.N. generated the Casp11–/– and Casp1–/–Casp11Tg mice. J.L. performed bioinformatics analyses. N.K., S.W., K.N. and V.M.D. prepared the manuscript. N.K. and V.M.D. contributed to the study design and data analyses.

Corresponding authors

Correspondence to Nobuhiko Kayagaki or Vishva M. Dixit.

Ethics declarations

Competing interests

Most authors were employees of Genentech, Inc.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-7 with legends and Supplementary Tables 1-2. (PDF 1167 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kayagaki, N., Warming, S., Lamkanfi, M. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011). https://doi.org/10.1038/nature10558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10558

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing