Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aspartate 112 is the selectivity filter of the human voltage-gated proton channel

Abstract

The ion selectivity of pumps and channels is central to their ability to perform a multitude of functions. Here we investigate the mechanism of the extraordinary selectivity of the human voltage-gated proton channel1, HV1 (also known as HVCN1). This selectivity is essential to its ability to regulate reactive oxygen species production by leukocytes2,3,4, histamine secretion by basophils5, sperm capacitation6, and airway pH7. The most selective ion channel known, HV1 shows no detectable permeability to other ions1. Opposing classes of selectivity mechanisms postulate that (1) a titratable amino acid residue in the permeation pathway imparts proton selectivity1,8,9,10,11, or (2) water molecules ‘frozen’ in a narrow pore conduct protons while excluding other ions12. Here we identify aspartate 112 as a crucial component of the selectivity filter of HV1. When a neutral amino acid replaced Asp 112, the mutant channel lost proton specificity and became anion-selective or did not conduct. Only the glutamate mutant remained proton-specific. Mutation of the nearby Asp 185 did not impair proton selectivity, indicating that Asp 112 has a unique role. Although histidine shuttles protons in other proteins, when histidine or lysine replaced Asp 112, the mutant channel was still anion-permeable. Evidently, the proton specificity of HV1 requires an acidic group at the selectivity filter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of five key amino acids that differ in H V 1 and C15orf27, and the currents generated in a heterologous expression system by H V 1 mutants in which H V 1 residues were replaced by the corresponding amino acid in the non-conducting C15orf27.
Figure 2: Currents in Asp 112 mutants resemble proton currents, but are not.
Figure 3: Dilution of ionic strength by 90% with isotonic sucrose shifted V rev positively, indicating that most Asp 112 mutants are anion-selective.

Similar content being viewed by others

References

  1. DeCoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003)

    Article  CAS  Google Scholar 

  2. Capasso, M. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nature Immunol. 11, 265–272 (2010)

    Article  CAS  ADS  Google Scholar 

  3. DeCoursey, T. E., Morgan, D. & Cherny, V. V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422, 531–534 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Henderson, L. M., Chappell, J. B. & Jones, O. T. G. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 246, 325–329 (1987)

    Article  CAS  Google Scholar 

  5. Musset, B. et al. A pH-stabilizing role of voltage-gated proton channels in IgE-mediated activation of human basophils. Proc. Natl Acad. Sci. USA 105, 11020–11025 (2008)

    Article  CAS  ADS  Google Scholar 

  6. Lishko, P. V., Botchkina, I. L., Fedorenko, A. & Kirichok, Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140, 327–337 (2010)

    Article  CAS  Google Scholar 

  7. Iovannisci, D., Illek, B. & Fischer, H. Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T. J. Gen. Physiol. 136, 35–46 (2010)

    Article  CAS  Google Scholar 

  8. Cherny, V. V., Markin, V. S. & DeCoursey, T. E. The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J. Gen. Physiol. 105, 861–896 (1995)

    Article  CAS  Google Scholar 

  9. DeCoursey, T. E. & Cherny, V. V. Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. J. Gen. Physiol. 109, 415–434 (1997)

    Article  CAS  Google Scholar 

  10. DeCoursey, T. E. & Cherny, V. V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J. Gen. Physiol. 112, 503–522 (1998)

    Article  CAS  Google Scholar 

  11. DeCoursey, T. E. & Cherny, V. V. Voltage-activated hydrogen ion currents. J. Membr. Biol. 141, 203–223 (1994)

    Article  CAS  Google Scholar 

  12. Ramsey, I. S. et al. An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nature Struct. Mol. Biol. 17, 869–875 (2010)

    Article  CAS  Google Scholar 

  13. Levitt, D. G., Elias, S. R. & Hautman, J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim. Biophys. Acta 512, 436–451 (1978)

    Article  CAS  Google Scholar 

  14. Nagle, J. F. & Morowitz, H. J. Molecular mechanisms for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298–302 (1978)

    Article  CAS  ADS  Google Scholar 

  15. Nelson, R. D., Kuan, G., Saier, M. H., Jr & Montal, M. Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 1, 281–287 (1999)

    CAS  PubMed  Google Scholar 

  16. Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006)

    Article  CAS  ADS  Google Scholar 

  17. Musset, B. et al. Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating. J. Physiol. (Lond.) 588, 1435–1449 (2010)

    Article  CAS  Google Scholar 

  18. Musset, B. et al. Detailed comparison of expressed and native voltage-gated proton channel currents. J. Physiol. (Lond.) 586, 2477–2486 (2008)

    Article  CAS  Google Scholar 

  19. Barry, P. H. The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies. Cell Biochem. Biophys. 46, 143–154 (2006)

    Article  CAS  Google Scholar 

  20. Tao, X., Lee, A., Limapichat, W., Dougherty, D. A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010)

    Article  CAS  ADS  Google Scholar 

  21. Sansom, M. S. P., Kerr, I. D., Smith, G. R. & Son, H. S. The influenza A virus M2 channel: a molecular modeling and simulation study. Virology 233, 163–173 (1997)

    Article  CAS  Google Scholar 

  22. Hu, F., Luo, W. & Hong, M. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330, 505–508 (2010)

    Article  CAS  ADS  Google Scholar 

  23. Venkataraman, P., Lamb, R. A. & Pinto, L. H. Chemical rescue of histidine selectivity filter mutants of the M2 ion channel of influenza A virus. J. Biol. Chem. 280, 21463–21472 (2005)

    Article  CAS  Google Scholar 

  24. Acharya, R. et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc. Natl Acad. Sci. USA 107, 15075–15080 (2010)

    Article  CAS  ADS  Google Scholar 

  25. Starace, D. M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001)

    Article  CAS  Google Scholar 

  26. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)

    Article  CAS  ADS  Google Scholar 

  27. Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J. Gen. Physiol. 136, 225–236 (2010)

    Article  CAS  Google Scholar 

  28. Tu, C. K., Silverman, D. N., Forsman, C., Jonsson, B. H. & Lindskog, S. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28, 7913–7918 (1989)

    Article  CAS  Google Scholar 

  29. Leiding, T., Wang, J., Martinsson, J., DeGrado, W. F. & Årsköld, S. P. Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc. Natl Acad. Sci. USA 107, 15409–15414 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Pei, J., Kim, B. H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008)

    Article  CAS  Google Scholar 

  32. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)

    Article  Google Scholar 

  33. Felsenstein, J. PROTPARS – Protein Sequence Parsimony Method http://cmgm.stanford.edu/phylip/protpars.html (1993)

  34. Néron, B. et al. Mobyle: a new full web bioinformatics framework. Bioinformatics 25, 3005–3011 (2009)

    Article  Google Scholar 

  35. Chevenet, F., Brun, C., Bañuls, A. L., Jacq, B. & Christen, R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439 (2006)

    Article  Google Scholar 

  36. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007)

    Article  CAS  Google Scholar 

  37. Cherny, V. V. & DeCoursey, T. E. pH-dependent inhibition of voltage-gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations. J. Gen. Physiol. 114, 819–838 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. H. Barry, D. Gillespie, V. S. Markin, J. F. Nagle, R. Pomès, D. Silverman and V. Sokolov for discussions or comments on the manuscript. Supported by NSF grant MCB-0943362 (S.M.E.S. and T.E.D.) and NIH grant GM087507 (T.E.D.). The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.R. identified the similarity of C15orf27 to HV1 and cloned the C15orf27 gene; S.M.E.S. conceived the strategic approach based on molecular model, sequence and phylogenetic analysis; S.R. and S.M.E.S. created mutants; T.E.D., B.M. and V.V.C. designed experiments; B.M., D.M. and V.V.C. recorded, analysed and interpreted data; T.E.D. wrote the manuscript; all authors read and approved the manuscript.

Corresponding author

Correspondence to Thomas E. DeCoursey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-9 with legends, Supplementary Tables 1-4 and additional references. (PDF 2495 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musset, B., Smith, S., Rajan, S. et al. Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 480, 273–277 (2011). https://doi.org/10.1038/nature10557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10557

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing